Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Team Produces Molecular Barrels

05.08.2013
Researchers show that two protein machineries collaborate on the development of barrel structures in the mitochondria

Research groups headed by Prof. Dr. Nikolaus Pfanner, Dr. Nils Wiedemann, and Dr. Thomas Becker from the University of Freiburg and their colleagues have demonstrated how molecular protein barrels form in the outer membrane of the mitochondria, the powerhouses of the cell. Their studies revealed that two protein machineries cooperate in an unexpected way. The researchers published their findings in the scientific journal “Cell”.


The protein machineries TOM und SAM are linked via Tom22 and work together in the maturation process of beta-barrel structures of proteins. Modified from Becker et al., 2008; Biochim. Biophys. Acta 1777, 447-563 © Thomas Becker (BBA-2008)

Mitochondria are essential for the survival of the cell, rendering such vital services as providing the energy for cell metabolism. Mitochondria are surrounded by two membranes. The outer membrane contains characteristic proteins with a barrel-like structure, the beta-barrel structure. These proteins extend across the membrane and are crucial for the transport of proteins and metabolic products into the mitochondria. The proteins are produced as precursors in the cytosol, only forming their mature barrel structure upon entering the mitochondrion.

They are imported through the pores of the protein complex TOM, the translocase of the outer mitochondrial membrane, and then transported to a second protein machinery in the outer membrane, the sorting and assembly machinery SAM. Finally, the SAM complex integrates the proteins into the membrane. The individual steps leading to the formation of the beta-barrel structure and the transfer of the precursor protein from TOM to SAM were not previously understood.

The researchers studied the formation of the beta-barrel structure within the context of a partnership between the Collaborative Research Center 746 “Functional Specificity by Coupling and Modification of Proteins,” the Cluster of Excellence BIOSS Centre for Biological Signalling Studies, and the Spemann Graduate School of Biology and Medicine.

The team headed by Nils Wiedemann demonstrated that the beta-barrel structure forms at the SAM complex. The PhD student Jian Qiu discovered that the receptor protein Tom22 plays a key role in this process. This comes as a surprise, because it was previously thought that TOM and SAM were independent protein machineries. However, findings from Thomas Becker’s research group showed that the two complexes directly interact with each other. They are linked by Tom22, as the PhD student Lena-Sophie Wenz discovered. If Tom22 is not present, the molecular bridge between TOM and SAM is lost – severely hampering the formation of beta-barrel structures. The findings of this study demonstrate that the direct transfer of the imported protein from the TOM complex to the SAM complex enables an efficient formation of mitochondrial beta-barrel structures.

Original publication:
Jian Qiu, Lena-Sophie Wenz, Ralf M. Zerbes, Silke Oeljeklaus, Maria Bohnert, David A. Stroud, Christophe Wirth, Lars Ellenrieder, Nicolas Thornton, Stephan Kutik, Sebastian Wiese, Agnes Schulze-Specking, Nicole Zufall, Agnieszka Chacinska, Bernard Guiard, Carola Hunte, Bettina Warscheid, Martin van der Laan, Nikolaus Pfanner, Nils Wiedemann, and Thomas Becker (2013) Coupling of Mitochondrial Import and Export Translocases by Receptor-Mediated Supercomplex Formation. Cell, Volume 154, Issue 3, 596-608, doi: 10.1016/j.cell.2013.06.033
Contact:
PD Dr. Thomas Becker
Institute of Biochemistry and Molecular Biology
University of Freiburg
Phone: +49 (0)761/203-5243
E-Mail: thomas.becker@biochemie.uni-freiburg.de

Rudolf-Werner Dreier | University of Freiburg
Further information:
http://www.uni-freiburg.de

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>