Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Team Produces Molecular Barrels

05.08.2013
Researchers show that two protein machineries collaborate on the development of barrel structures in the mitochondria

Research groups headed by Prof. Dr. Nikolaus Pfanner, Dr. Nils Wiedemann, and Dr. Thomas Becker from the University of Freiburg and their colleagues have demonstrated how molecular protein barrels form in the outer membrane of the mitochondria, the powerhouses of the cell. Their studies revealed that two protein machineries cooperate in an unexpected way. The researchers published their findings in the scientific journal “Cell”.


The protein machineries TOM und SAM are linked via Tom22 and work together in the maturation process of beta-barrel structures of proteins. Modified from Becker et al., 2008; Biochim. Biophys. Acta 1777, 447-563 © Thomas Becker (BBA-2008)

Mitochondria are essential for the survival of the cell, rendering such vital services as providing the energy for cell metabolism. Mitochondria are surrounded by two membranes. The outer membrane contains characteristic proteins with a barrel-like structure, the beta-barrel structure. These proteins extend across the membrane and are crucial for the transport of proteins and metabolic products into the mitochondria. The proteins are produced as precursors in the cytosol, only forming their mature barrel structure upon entering the mitochondrion.

They are imported through the pores of the protein complex TOM, the translocase of the outer mitochondrial membrane, and then transported to a second protein machinery in the outer membrane, the sorting and assembly machinery SAM. Finally, the SAM complex integrates the proteins into the membrane. The individual steps leading to the formation of the beta-barrel structure and the transfer of the precursor protein from TOM to SAM were not previously understood.

The researchers studied the formation of the beta-barrel structure within the context of a partnership between the Collaborative Research Center 746 “Functional Specificity by Coupling and Modification of Proteins,” the Cluster of Excellence BIOSS Centre for Biological Signalling Studies, and the Spemann Graduate School of Biology and Medicine.

The team headed by Nils Wiedemann demonstrated that the beta-barrel structure forms at the SAM complex. The PhD student Jian Qiu discovered that the receptor protein Tom22 plays a key role in this process. This comes as a surprise, because it was previously thought that TOM and SAM were independent protein machineries. However, findings from Thomas Becker’s research group showed that the two complexes directly interact with each other. They are linked by Tom22, as the PhD student Lena-Sophie Wenz discovered. If Tom22 is not present, the molecular bridge between TOM and SAM is lost – severely hampering the formation of beta-barrel structures. The findings of this study demonstrate that the direct transfer of the imported protein from the TOM complex to the SAM complex enables an efficient formation of mitochondrial beta-barrel structures.

Original publication:
Jian Qiu, Lena-Sophie Wenz, Ralf M. Zerbes, Silke Oeljeklaus, Maria Bohnert, David A. Stroud, Christophe Wirth, Lars Ellenrieder, Nicolas Thornton, Stephan Kutik, Sebastian Wiese, Agnes Schulze-Specking, Nicole Zufall, Agnieszka Chacinska, Bernard Guiard, Carola Hunte, Bettina Warscheid, Martin van der Laan, Nikolaus Pfanner, Nils Wiedemann, and Thomas Becker (2013) Coupling of Mitochondrial Import and Export Translocases by Receptor-Mediated Supercomplex Formation. Cell, Volume 154, Issue 3, 596-608, doi: 10.1016/j.cell.2013.06.033
Contact:
PD Dr. Thomas Becker
Institute of Biochemistry and Molecular Biology
University of Freiburg
Phone: +49 (0)761/203-5243
E-Mail: thomas.becker@biochemie.uni-freiburg.de

Rudolf-Werner Dreier | University of Freiburg
Further information:
http://www.uni-freiburg.de

More articles from Life Sciences:

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

nachricht ADP-ribosylation on the right track
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

European particle-accelerator community publishes the first industry compendium

26.04.2018 | Physics and Astronomy

Multifunctional bacterial microswimmer able to deliver cargo and destroy itself

26.04.2018 | Life Sciences

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>