Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Team Produces Molecular Barrels

05.08.2013
Researchers show that two protein machineries collaborate on the development of barrel structures in the mitochondria

Research groups headed by Prof. Dr. Nikolaus Pfanner, Dr. Nils Wiedemann, and Dr. Thomas Becker from the University of Freiburg and their colleagues have demonstrated how molecular protein barrels form in the outer membrane of the mitochondria, the powerhouses of the cell. Their studies revealed that two protein machineries cooperate in an unexpected way. The researchers published their findings in the scientific journal “Cell”.


The protein machineries TOM und SAM are linked via Tom22 and work together in the maturation process of beta-barrel structures of proteins. Modified from Becker et al., 2008; Biochim. Biophys. Acta 1777, 447-563 © Thomas Becker (BBA-2008)

Mitochondria are essential for the survival of the cell, rendering such vital services as providing the energy for cell metabolism. Mitochondria are surrounded by two membranes. The outer membrane contains characteristic proteins with a barrel-like structure, the beta-barrel structure. These proteins extend across the membrane and are crucial for the transport of proteins and metabolic products into the mitochondria. The proteins are produced as precursors in the cytosol, only forming their mature barrel structure upon entering the mitochondrion.

They are imported through the pores of the protein complex TOM, the translocase of the outer mitochondrial membrane, and then transported to a second protein machinery in the outer membrane, the sorting and assembly machinery SAM. Finally, the SAM complex integrates the proteins into the membrane. The individual steps leading to the formation of the beta-barrel structure and the transfer of the precursor protein from TOM to SAM were not previously understood.

The researchers studied the formation of the beta-barrel structure within the context of a partnership between the Collaborative Research Center 746 “Functional Specificity by Coupling and Modification of Proteins,” the Cluster of Excellence BIOSS Centre for Biological Signalling Studies, and the Spemann Graduate School of Biology and Medicine.

The team headed by Nils Wiedemann demonstrated that the beta-barrel structure forms at the SAM complex. The PhD student Jian Qiu discovered that the receptor protein Tom22 plays a key role in this process. This comes as a surprise, because it was previously thought that TOM and SAM were independent protein machineries. However, findings from Thomas Becker’s research group showed that the two complexes directly interact with each other. They are linked by Tom22, as the PhD student Lena-Sophie Wenz discovered. If Tom22 is not present, the molecular bridge between TOM and SAM is lost – severely hampering the formation of beta-barrel structures. The findings of this study demonstrate that the direct transfer of the imported protein from the TOM complex to the SAM complex enables an efficient formation of mitochondrial beta-barrel structures.

Original publication:
Jian Qiu, Lena-Sophie Wenz, Ralf M. Zerbes, Silke Oeljeklaus, Maria Bohnert, David A. Stroud, Christophe Wirth, Lars Ellenrieder, Nicolas Thornton, Stephan Kutik, Sebastian Wiese, Agnes Schulze-Specking, Nicole Zufall, Agnieszka Chacinska, Bernard Guiard, Carola Hunte, Bettina Warscheid, Martin van der Laan, Nikolaus Pfanner, Nils Wiedemann, and Thomas Becker (2013) Coupling of Mitochondrial Import and Export Translocases by Receptor-Mediated Supercomplex Formation. Cell, Volume 154, Issue 3, 596-608, doi: 10.1016/j.cell.2013.06.033
Contact:
PD Dr. Thomas Becker
Institute of Biochemistry and Molecular Biology
University of Freiburg
Phone: +49 (0)761/203-5243
E-Mail: thomas.becker@biochemie.uni-freiburg.de

Rudolf-Werner Dreier | University of Freiburg
Further information:
http://www.uni-freiburg.de

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>