Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein structures revealed at record pace

23.07.2009
Scientists at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory have developed a fast and efficient way to determine the structure of proteins, shortening a process that often takes years into a matter of days.

The high-throughput protein pipeline could allow scientists to expedite the development of biofuels, decipher how extremophiles thrive in conditions that kill most organisms, and better understand how proteins carry out life's vital functions.

The technique will help scientists keep pace with the growing flood of data stemming from genomic studies of organisms and environmental samples such as seawater and soil. Every new gene identified in these studies codes for a protein, and the structure of each protein must be characterized in order to determine what it does. Current structural characterization techniques are slow, however, meaning newly discovered proteins and their many complexes keep piling up, their function remaining a mystery.

"There's a bottleneck in structural genomics, and our system addresses that," says Greg Hura, a scientist in Berkeley Lab's Physical Biosciences Division. He developed the technique with John Tainer of Berkeley Lab's Life Sciences Division and the Scripps Research Institute in La Jolla, CA. Michael Adams and other scientists from the University of Georgia also contributed to the research.

Their work is published in the July 20 online edition of the journal Nature Methods.

The team developed the protein pipeline at the Advanced Light Source (ALS), a national user facility located at Berkeley Lab that generates intense light for scientific research. At a beamline called SIBYLS, they used a technique called small angle x-ray scattering (SAXS), which can image a protein in its natural state, such as in a solution, and at a spatial resolution of about 10 angstroms, which is small enough to determine a protein's three-dimensional shape. The brilliant light generated by the Advanced Light Source minimizes the amount of material required for each experiment, which makes the technique practical for almost any biomolecule.

To maximize speed, Hura installed a robot that automatically pipettes protein samples into position so they can be analyzed by x-ray scattering. And to analyze the resulting data, they used the supercomputing resources of the U.S. Department of Energy's National Energy Research Scientific Computing Center (NERSC), which is based at Berkeley Lab. The supercomputer's clusters can churn through data for 20 proteins per week, or more than 1000 macromolecules per year.

The result is a system that moves at breakneck speed compared to current techniques used to determine the shape and structure of proteins: x-ray crystallography and nuclear magnetic resonance. Recently, in the span of one month, the team used the system to resolve the structure of 40 proteins from Pyrococcus furiosus, a microscopic extremophile that can live at 100°C.

"This would have taken several years with x-ray crystallography," says Hura. "What used to take years, now can takes weeks."

Adds Tainer, "We can now obtain structural information in solution on most samples, rather than the 15 percent obtained by the best of the current Structural Genomics Initiative efforts employing nuclear magnetic resonance and crystallography. "

The Berkeley Lab team chose P. furiosus because it is an intriguing candidate for the production of clean energy and other applications. It has a pathway that produces hydrogen, which is a potential alternative fuel. And many industrial processes are highly acidic and very hot — conditions that P. furiosus loves.

"If we could learn which of the organism's proteins allow it to thrive in these conditions, then maybe we can apply them to energy production and other applications," says Hura.

Future synthetic biology efforts may involve taking a useful protein or a network of proteins from one microbe, and importing it into another microbe. In order to do this, scientists must learn how much of the network needs to be imported and still have it be able to do its job. This requires analyzing individual proteins in hundreds of different conditions.

"This is where our system will have a big impact. We can do this type of structural analysis in a matter of weeks, as opposed to years with crystallography," says Hura.

Of course, such speed doesn't come without tradeoffs. X-ray crystallography yields extremely high-resolution images, while small angle x-ray scattering yields a protein's shape at a much lower resolution of about 10 angstroms (one angstrom is one ten-millionth of a millimeter).

But the level of information offered by x-ray crystallography isn't always necessary. Sometimes, simply knowing if one protein is similar in shape to another is enough to learn its function. And SAXS makes up for what it lacks in precision by providing accurate information on the shape, assembly, and conformational changes of proteins in solution.

"We can have less information and still answer the questions that need to be answered," says Hura, adding that their technique will help usher in the next phase of genomics research. "The number of genes being identified is growing at a huge rate. We need to keep pace with this and learn about all the proteins encoded in these genes."

Adds Tainer, "This pipeline is an example of the stunning impact we can achieve by combining physics and engineering with structural biology, which is possible at government labs like Berkeley Lab."

The multidisciplinary work, which was conducted at Berkeley Lab's Advanced Light Source at beamline 12.3.1, also known as SIBYLS (Structurally Integrated BiologY for Life Sciences), relied on resources provided by three separate offices within the DOE Office of Science (SC). This work itself was supported in part by SC's Office of Biological and Environmental Research (BER). The ALS is supported by SC's Office of Basic Energy Sciences, while the beamline is supported in part by BER. NERSC is funded by SC's Office of Advanced Scientific Computing.

To aid communication of results, the team created a web-accessible database, www.Bioisis.net, which archives all experimental details associated with each analyzed sample.

"Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)" by Greg Hura, Angeli Menon, Michal Hammel, Robert P. Rambo, Farris Poole, Susan Tsutakawa, Francis Jenney, Scott Classen, Kenneth Frankel, Robert Hopkins, Sung-jae Yang, Joseph Scott, Bret Dillard, Michael Adams, and John Tainer is published online July 20 in the journal Nature Methods.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the DOE Office of Science. Visit our website at http://www.lbl.gov.

Dan Krotz | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>