Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein signal is crucial for accurate control of insect size

07.05.2012
Two independent groups of researchers have identified a hormone that is responsible for keeping the growth and development of insects on track.

The results, which are reported in the journal Science, suggest that Dilp8 provides an important signal to slow body growth and delay insect development. This braking effect is an essential part of normal development since it allows sufficient time for tissues to form and the correct body size, proportions and symmetry to be achieved.


This image shows the left-right asymmetry of an adult fly deficient in dilp8. Credit: Maria Dominguez, Instituto de Neurociencias, Alicante

"The important question about the control of animal size is knowing when to stop," said EMBO Member Maria Dominguez, lead author of one of the papers and Professor at the Institute of Neurosciences in Alicante, Spain. "To achieve the required precision in the control of growth, organs within the body of an insect must be capable of sensing their own size and communicating their dimensions to other organs in the body and to the endocrine system." She added: "Our work with Drosophila suggests that growing organs and tissues produce a secreted peptide known as Dilp8. This hormone coordinates the growth rate of different organs in the body and is capable of delaying important developmental steps such as metamorphosis. In healthy flies, this additional time is essential to ensure that functional tissues are established and for organs to reach normal size. It also ensures that organs maintain perfect bilateral symmetry."

Dominguez and collaborators examined tumours in the eye discs of Drosophila, parts of the insect body that go on to generate fully formed eyes in mature adult flies. Developing flies often adjust growth and the timing of metamorphosis to compensate for the disturbance induced by tumours or injury. The researchers wanted to investigate if a shared molecular signal was responsible for these observations. "Our work identifies Dilp8 as a signal that communicates the growth status of tissues as well as local responses to recovery from injury and cancer," said Dominguez.

EMBO Member Pierre Léopold and collaborators from the Institute of Biology Valrose at the University of Nice, France, identified the same protein using a different experimental approach. "We used a genome-wide RNA interference approach to look for Drosophila gene candidates that might be involved in coupling growth with the timing of development. Out of 11,000 genes that we tested in our genetic screen, only one was able, upon silencing, to rescue the delay in development induced by conditions that perturb tissue growth. This candidate gene corresponded to dilp8, which is exactly same gene identified by Dominguez and collaborators."

The expression of the dilp8 gene reduces tissue growth, which suggests that in addition to its role in preventing the hormonal induction of metamorphosis, dilp8 could act by slowing the growth of healthy tissues to stay synchronized with slow-growing tissue.

Until now, little information at the molecular level has been available about how organ growth is monitored and coordinated with the timing of development in insects and other complex organisms. Dilp8 appears to be part of the molecular machinery that helps tissues to grow and develop at the right pace.

Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation

Andres Garelli, Alisson M. Gontijo, Veronica Miguela, Esther Caparros, Maria Dominguez

Read the paper:
Science 4 May 2012: Vol. 336 no. 6081 pp. 579-582.
doi: 10.1126/science.1216735
Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing

Julien Colombani, Ditte S. Andersen, Pierre Léopold

Read the paper:
Science 4 May 2012: Vol. 336 no. 6081 pp. 582-585
doi: 10.1126/science.1216689
About EMBO
EMBO stands for excellence in the life sciences. The organization enables the best science by supporting talented researchers, stimulating scientific exchange and advancing policies for a world-class European research environment.

EMBO is an organization of 1500 leading life scientist members that fosters new generations of researchers to produce world-class scientific results. EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in cutting-edge techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe. For more information: www.embo.org

Barry Whyte | EurekAlert!
Further information:
http://www.embo.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>