Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein Sharpens Salmonella Needle for Attack


A tiny nanoscale syringe is Salmonella’s weapon. Using this, the pathogen injects its molecular agents into the host cells and manipulates them to its own advantage.

A team of scientists at the Biozentrum of the University of Basel demonstrate in their current publication in Cell Reports that a much investigated protein, which plays a role in Salmonella metabolism, is required to activate these needles and makes the replication and spread of Salmonella throughout the whole body possible.

Section of a Salmonella (yellow) infected spleen (red: red blood cells; blue: neutrophils).

(Fig.: University of Basel, Biozentrum)

The summer months are the prime time for Salmonella infections. Such an infection is caused by the ingestion of contaminated food, for instance ice cream or raw eggs, and can cause severe diarrhea. Salmonella can even cause life-threatening illnesses such as typhoid fever.

For several years, Prof. Dirk Bumann, from the Biozentrum of the University of Basel, has been studying the infection mechanisms of Salmonella. Together with his team, he has discovered that the bacterial protein EIIAGlc is not only responsible for the uptake of nutrients, which was previously known, but also plays a central role in Salmonella colonizing the host organism.

New function discovered for well known protein

Salmonella possesses a sophisticated injection apparatus, the type III secretion system. With this molecular syringe, it injects toxins directly into the host cells. These toxins manipulate host cell processes to create optimal growth conditions for the bacteria in hiding. Unforeseen, Bumann and his team uncovered an important teammate in the infection process, the protein EIIAGlc. The protein was already known for its many functions in bacterial metabolism, such as in the uptake of sugars molecules.

The researchers’ attention was attracted by the fact that when EIIAGlc is defective Salmonella completely loses its capacity for intracellular replication and to spread throughout the organism. Further investigations finally brought the scientists from Basel onto the right track. The protein EIIAGlc docks onto the injection apparatus in the bacterium, stabilizes it and finally activates the release of the toxins. “We can clearly demonstrate that the activation of the secretion system is the main function of the protein EIIAGlc, while the many other described metabolic functions play a minor role in the occurrence of illness”, says Bumann bringing his findings to the point.

Target molecule for antibiotic treatment

It is estimated that each year about 16 million people worldwide contract a life-threatening Salmonella infection that affects the whole organism. The spread of the bacteria in the host is highly dependent on the functional capacity of the injection system. “In EIIAGlc, we have found a new potential therapeutic target”, says Bumann. By inhibiting the protein, one could strategically put the infection apparatus out of action. As this injection needle is primarily found in pathogens, infections could be

Original source
Alain Mazé, Timo Glatter, Dirk Bumann
The central metabolism regulator EIIAGlc switches Salmonella from growth arrest to acute virulence through activation of virulence factor secretion
Cell Reports, published online 15 May 2014

Further information
Prof. Dr. Dirk Bumann, University of Basel, Biozentrum, phone: +41 61 267 23 82, email:

Katrin Bühler | Universität Basel
Further information:

Further reports about: Biozentrum Cell Protein Salmonella capacity eggs function metabolism protein therapeutic toxins

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>