Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein shaped like a spider

26.04.2013
Joint press release of the Helmholtz Centre for Infection Research and the Technische Universität Darmstadt
The immune protein C4BP is potentially suitable as a transporter for drugs.

The protein C4BP is similar to a spider in its spatial form with eight “arms”. The structure of the “spider body” has recently been described in detail by researchers from the Helmholtz Centre for Infection Research (HZI) in Braunschweig and the Technische Universität Darmstadt. This leads the scientists to unconventional ideas – the protein is possibly suitable as a scaffold for the transport of active pharmaceutical substances, particularly biomolecules.
The researchers are publishing their results in the current edition of the international journal Journal of Molecular Biology.

The so-called complement system is a part of the innate immune defence within the human body: more than sixty different proteins form one of the first countermeasures against invading pathogens. One of them is the C4b binding protein known as C4BP. It is involved in the immune defence against bacteria in the blood. How precisely such protein substance carries out its function or how it interacts with other molecules – this can only be predicted by scientists once they have identified the spatial structure of the molecule. Structural biologists therefore examine the substance in its purest form with x-ray machines and are able to reconstruct the spatial design in a computer. Regarding the case of the recently-described C4BP, they found out that it has eight “arms” and thus resembles a spider to a certain degree. Seven of the “arms” are identical as “alpha chains”, while the eighth, a “beta chain” is different from the others. The spider body that holds these side chains together is called the oligomerisation domain. Its structure was of special interest to researchers, since it determines the spatial alignment of the “arms”.
The newly-described structure allows two possible variants. “However, there is one of these two possibilities that is more feasible because it is much more stable”, says Thomas Hofmeyer, PhD student at the Institute for Organic Chemistry and Biochemistry of TU Darmstadt and first author for the publication. And the C4BP is quite stable, as explained by the other first author Dr. Stefan Schmelz from the Department of Molecular Structural Biology of HZI: “Even boiling is not able to break down its form.” Usually, human proteins remain stable up to about 40°C. Higher temperatures are of course not found in the body, but the stability of C4BP has a completely different purpose: “As is the case with all components of the complement system, the C4b binding protein is present in blood plasma. The proteins are exposed to enormous shear forces in the blood stream”, explains Dr. Andrea Scrima, head of the junior research group “Structural Biology of Autophagy“ at HZI. Therefore, the protein needs a high stability in order to be able to withstand these forces.

The researchers now would like to make use of the spatial structure. Their discoveries have facilitated biochemical synthesis of the molecule. In the context of replication within a test tube, the researchers can undertake alterations in a targeted way: “Instead of the seven alpha chains, we could implement other biomolecules”, claims Prof. Harald Kolmar, director of the work group Applied Biochemistry at the Institute for Organic Chemistry and Biochemistry at the Technische Universität Darmstadt. “We can use the oligomerisation domain as a framework, in order to decorate it with drug molecules.” These could be vaccines, for example. Seven with one stroke, by means of the seven-fold binding capability. Bundled in this manner, more active ingredient could make its way to its target. The dosage could be reduced but the immune system would still be considerably stimulated. “It is thereby possible in the future that bottlenecks, limiting the supply of vaccine, could be avoided and side effects reduced”, says Kolmar.

Original publication:
Thomas Hofmeyer*, Stefan Schmelz*, Matteo T. Degiacomi, Matteo Dal Peraro, Matin Daneschdar, Andrea Scrima, Joop van den Heuvel, Dirk W. Heinz, Harald Kolmar, * contributed equally
Arranged Sevenfold: Structural Insights into the C-Terminal Oligomerization Domain of Human C4b-Binding Protein
Journal of Molecular Biology, 2013, DOI: 10.1016/j.jmb.2012.12.017

The Helmholtz Centre for Infection Research:
At the Helmholtz Centre for Infection Research (HZI) in Braunschweig, scientists are studying microbial virulence factors, host-pathogen interactions and immunity. The goal is to develop strategies for the diagnosis, prevention and therapy of human infectious diseases.

Schematic of the "spider protein" C4BP.
© HZI / Schmelz

http://www.helmholtz-hzi.de/en

The Technische Universität Darmstadt:
The Technische Universität (TU) Darmstadt is one of Germany’s leading technical universities. Its around 300 professors, 4,500 scientific and administrative employees and 25,000 students devote their talents and best efforts to the significant future research fields energy, mobility, communications and information technologies, housing and living.

http://www.tu-darmstadt.de

Dr. Jan Grabowski | Helmholtz-Zentrum
Further information:
http://dx.doi.org/10.1016/j.jmb.2012.12.017
http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/protein_shaped_like_a_spider/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>