Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein serves as a natural boost for immune system fight against tumors

Substances called adjuvants that enhance the body's immune response are critical to getting the most out of vaccines. These boosters stimulate the regular production of antibodies -- caused by foreign substances in the body -- toxins, bacteria, foreign blood cells, and the cells of transplanted organs.

But, biologists think that vaccine adjuvants could be much better: The currently available licensed adjuvants are poor inducers of T helper cells and even worse at inciting killer T cells that clear viruses, as well as eradicate cancer cells.

The lab of David Weiner, PhD, professor of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, identifies new adjuvants that can produce the desired T-cell response. "Different molecular adjuvants, such as cytokines, are being studied as a way to increase the efficacy of vaccines," explains Weiner. "The development of DNA-based vaccines with cytokine adjuvants has emerged as particularly promising for inducing antiviral and anti-tumor, cell-mediated immune responses."

Daniel Villarreal, a graduate student in the Weiner lab, and colleagues report in Cancer Research this week that the protein IL-33 boosts the immune system of a human papilloma virus animal model of cancer. IL-33 is a cytokine, a small protein that signals immune cells such as T cells to travel to a site of infection or injury.

Although still experimental, DNA vaccines are a conceptual leap forward over standard vaccines, as they are not live and never expose the person being vaccinated to a true pathogen or infectious agent. They are transient and do their job by fooling the host's immune system into believing there is an infectious agent invading their cells so that the host responds by producing protective levels of T cells, in particular CD8 killer T cells. DNA vaccines have been studied in animal models of viral, bacterial, and parasitic disease, as well as animal models of tumors. Due to major advances in their immune potency DNA vaccines are being studied in human clinical trials for treating cancer and infectious diseases.

The team showed that IL-33 can further enhance the response of memory T cells, the long-lived cells that can patrol and protect the body from infections and cancers, when given with a DNA vaccine compared to a vaccine without IL-33. What's more, IL-33 and the DNA vaccine augmented immunological responses in both CD4 helper T cells and CD8 killer T cells, with a large proportion of CD8 killer T cells demonstrating a further improvement in the ability of DNA vaccines to drive the immune system to kill tumor cells in animals.

"Our results support the further study and possible development of IL-33 as adjuvants in vaccinations against pathogens, including in the context of antitumor immunotherapy," says Weiner. Additional cancer and infectious diseases studies in diverse animal models are in progress.

Other co-authors are Megan C. Wise, Jewell N. Walters, Emma Reuschel, Min Joung Choi, and Nyamekye Obeng-Adjei, all from Penn, and Jian Yan and Matthew P. Morrow, from Inovio Pharmaceuticals, Inc., Blue Bell, PA. This study was funded in part by the Basser Research Center for BRCA, the National Institutes of Health (U19- AI078675) and a Sponsored Research Award from Inovio.

Editors' Note: Weiner has received compensation from Inovio for consulting and serving on the scientific advisory board.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 16 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $398 million awarded in the 2012 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; Chester County Hospital; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2012, Penn Medicine provided $827 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>