Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein scaffold

27.05.2015

Right before a cell starts to divide to give birth to a daughter cell, its biochemical machinery unwinds the chromosomes and copies the millions of protein sequences comprising the cell's DNA, which is packaged along the length of the each chromosomal strand. These copied sequences also need to be put back together before the two cells are pulled apart. Mistakes can lead to genetic defects or cancerous mutations in future cell generations.

Just like raising a building requires scaffolding be erected first, cells use biochemical scaffolding machinery to reassemble copied genomic fragments back into chromosomes. Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have mapped the points along the genome where a scaffolding protein crucial to maintaining the genome's structure binds. The paper was published in Genes to Cells.


The cells on the left are normal yeast cells, in the process of dividing successfully. As can be seen, the replicated chromosomes have completely separated from the original. The cells on the right produced mutant condensin and their chromosomes were unable to segregate properly.

Credit: OIST

The protein complex, called condensin, is one of many that become active when cells replicate. Researchers in OIST's G0 Cell Unit used fission yeast to find the binding sites of this particular protein complex along chromosomal DNA. This type of yeast shares many important genes with us and also has one of the two known condensin complexes in humans. It also undergoes cell division by first creating copies of chromosomes like most human cells and has a very fast replication cycle, all of which facilitated the study.

The OIST researchers found that the largest amount of condensin aggregates at the centromere, the central knot tying together the two replicated chromosomes. In a lot of cancerous cells, the centromere has an unnatural shape, which could be caused by a malfunction in the relevant cell's scaffolding machinery.

Large amounts of condensin also accumulate at areas where RNA is created. In humans and all multicellular organisms, three different types of RNA producing enzymes control how genes are transcribed. Thus, condensin is crucial to passing on genes correctly.

Condensin also helps preserve the genome in challenging environments. OIST researchers bumped up the heat from 20 degrees to 36 degrees centigrade over 9 minutes, and found that condensin accumulated around heat-shock protein (Hsp) genes after replication. Hsp genes are a family of proteins produced by cells in stressful situations, ranging from high temperatures to ultraviolet light exposure to maintain genomic integrity.

The researchers also engineered a yeast strain where a mutant condensin was produced by the cell when it went into figurative labor. In this mutated strain, there were massive errors in disentangling the separately copied chromosomes from the original. DNA content in the mutant cells increased and some of the resulting cell sizes were larger.

Larger cells need more energy to survive and condensin could be crucial to maintaining appropriate DNA content and cell sizes across cellular generations.

Extraneous structures like RNA and bound proteins are typically present along the length of chromosomes. Accommodating these extra structures into the daughter cell's nucleus might be what increases the overall cell size.

"While these macromolecules are important for the parent cell, they pose hindrances during cell division to segregating the copied chromosomes to daughter cells properly," said Dr. Norihiko Nakazawa, of OIST's G0 Cell Unit, the paper's first author.

The OIST researchers speculate that condensin is trimming the hedgerow of the genome during the replication and dividing phase. They further speculate that these eliminated macromolecules might be regenerated by the cellular machinery of the daughter cell when necessary.

At this point, the relevant biochemical processes by which condensin works remain to be apprehended. The OIST study concentrates on only one type of condensin. Where the second type of condensin, which is present in humans and other multicellular organisms, binds during cell division is another future line of enquiry.

Media Contact

Kaoru Natori
kaoru.natori@oist.jp
81-989-662-389

 @oistedu

http://www.oist.jp/ 

Kaoru Natori | EurekAlert!

Further reports about: DNA Protein RNA cell division chromosomes daughter genes humans protein complex replication

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>