Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein scaffold

27.05.2015

Right before a cell starts to divide to give birth to a daughter cell, its biochemical machinery unwinds the chromosomes and copies the millions of protein sequences comprising the cell's DNA, which is packaged along the length of the each chromosomal strand. These copied sequences also need to be put back together before the two cells are pulled apart. Mistakes can lead to genetic defects or cancerous mutations in future cell generations.

Just like raising a building requires scaffolding be erected first, cells use biochemical scaffolding machinery to reassemble copied genomic fragments back into chromosomes. Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have mapped the points along the genome where a scaffolding protein crucial to maintaining the genome's structure binds. The paper was published in Genes to Cells.


The cells on the left are normal yeast cells, in the process of dividing successfully. As can be seen, the replicated chromosomes have completely separated from the original. The cells on the right produced mutant condensin and their chromosomes were unable to segregate properly.

Credit: OIST

The protein complex, called condensin, is one of many that become active when cells replicate. Researchers in OIST's G0 Cell Unit used fission yeast to find the binding sites of this particular protein complex along chromosomal DNA. This type of yeast shares many important genes with us and also has one of the two known condensin complexes in humans. It also undergoes cell division by first creating copies of chromosomes like most human cells and has a very fast replication cycle, all of which facilitated the study.

The OIST researchers found that the largest amount of condensin aggregates at the centromere, the central knot tying together the two replicated chromosomes. In a lot of cancerous cells, the centromere has an unnatural shape, which could be caused by a malfunction in the relevant cell's scaffolding machinery.

Large amounts of condensin also accumulate at areas where RNA is created. In humans and all multicellular organisms, three different types of RNA producing enzymes control how genes are transcribed. Thus, condensin is crucial to passing on genes correctly.

Condensin also helps preserve the genome in challenging environments. OIST researchers bumped up the heat from 20 degrees to 36 degrees centigrade over 9 minutes, and found that condensin accumulated around heat-shock protein (Hsp) genes after replication. Hsp genes are a family of proteins produced by cells in stressful situations, ranging from high temperatures to ultraviolet light exposure to maintain genomic integrity.

The researchers also engineered a yeast strain where a mutant condensin was produced by the cell when it went into figurative labor. In this mutated strain, there were massive errors in disentangling the separately copied chromosomes from the original. DNA content in the mutant cells increased and some of the resulting cell sizes were larger.

Larger cells need more energy to survive and condensin could be crucial to maintaining appropriate DNA content and cell sizes across cellular generations.

Extraneous structures like RNA and bound proteins are typically present along the length of chromosomes. Accommodating these extra structures into the daughter cell's nucleus might be what increases the overall cell size.

"While these macromolecules are important for the parent cell, they pose hindrances during cell division to segregating the copied chromosomes to daughter cells properly," said Dr. Norihiko Nakazawa, of OIST's G0 Cell Unit, the paper's first author.

The OIST researchers speculate that condensin is trimming the hedgerow of the genome during the replication and dividing phase. They further speculate that these eliminated macromolecules might be regenerated by the cellular machinery of the daughter cell when necessary.

At this point, the relevant biochemical processes by which condensin works remain to be apprehended. The OIST study concentrates on only one type of condensin. Where the second type of condensin, which is present in humans and other multicellular organisms, binds during cell division is another future line of enquiry.

Media Contact

Kaoru Natori
kaoru.natori@oist.jp
81-989-662-389

 @oistedu

http://www.oist.jp/ 

Kaoru Natori | EurekAlert!

Further reports about: DNA Protein RNA cell division chromosomes daughter genes humans protein complex replication

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>