Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein scaffold

27.05.2015

Right before a cell starts to divide to give birth to a daughter cell, its biochemical machinery unwinds the chromosomes and copies the millions of protein sequences comprising the cell's DNA, which is packaged along the length of the each chromosomal strand. These copied sequences also need to be put back together before the two cells are pulled apart. Mistakes can lead to genetic defects or cancerous mutations in future cell generations.

Just like raising a building requires scaffolding be erected first, cells use biochemical scaffolding machinery to reassemble copied genomic fragments back into chromosomes. Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have mapped the points along the genome where a scaffolding protein crucial to maintaining the genome's structure binds. The paper was published in Genes to Cells.


The cells on the left are normal yeast cells, in the process of dividing successfully. As can be seen, the replicated chromosomes have completely separated from the original. The cells on the right produced mutant condensin and their chromosomes were unable to segregate properly.

Credit: OIST

The protein complex, called condensin, is one of many that become active when cells replicate. Researchers in OIST's G0 Cell Unit used fission yeast to find the binding sites of this particular protein complex along chromosomal DNA. This type of yeast shares many important genes with us and also has one of the two known condensin complexes in humans. It also undergoes cell division by first creating copies of chromosomes like most human cells and has a very fast replication cycle, all of which facilitated the study.

The OIST researchers found that the largest amount of condensin aggregates at the centromere, the central knot tying together the two replicated chromosomes. In a lot of cancerous cells, the centromere has an unnatural shape, which could be caused by a malfunction in the relevant cell's scaffolding machinery.

Large amounts of condensin also accumulate at areas where RNA is created. In humans and all multicellular organisms, three different types of RNA producing enzymes control how genes are transcribed. Thus, condensin is crucial to passing on genes correctly.

Condensin also helps preserve the genome in challenging environments. OIST researchers bumped up the heat from 20 degrees to 36 degrees centigrade over 9 minutes, and found that condensin accumulated around heat-shock protein (Hsp) genes after replication. Hsp genes are a family of proteins produced by cells in stressful situations, ranging from high temperatures to ultraviolet light exposure to maintain genomic integrity.

The researchers also engineered a yeast strain where a mutant condensin was produced by the cell when it went into figurative labor. In this mutated strain, there were massive errors in disentangling the separately copied chromosomes from the original. DNA content in the mutant cells increased and some of the resulting cell sizes were larger.

Larger cells need more energy to survive and condensin could be crucial to maintaining appropriate DNA content and cell sizes across cellular generations.

Extraneous structures like RNA and bound proteins are typically present along the length of chromosomes. Accommodating these extra structures into the daughter cell's nucleus might be what increases the overall cell size.

"While these macromolecules are important for the parent cell, they pose hindrances during cell division to segregating the copied chromosomes to daughter cells properly," said Dr. Norihiko Nakazawa, of OIST's G0 Cell Unit, the paper's first author.

The OIST researchers speculate that condensin is trimming the hedgerow of the genome during the replication and dividing phase. They further speculate that these eliminated macromolecules might be regenerated by the cellular machinery of the daughter cell when necessary.

At this point, the relevant biochemical processes by which condensin works remain to be apprehended. The OIST study concentrates on only one type of condensin. Where the second type of condensin, which is present in humans and other multicellular organisms, binds during cell division is another future line of enquiry.

Media Contact

Kaoru Natori
kaoru.natori@oist.jp
81-989-662-389

 @oistedu

http://www.oist.jp/ 

Kaoru Natori | EurekAlert!

Further reports about: DNA Protein RNA cell division chromosomes daughter genes humans protein complex replication

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>