Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Well-known protein reveals new tricks

07.09.2012
UCSF study shows clathrin protein moonlights, playing key role in cell division

A protein called "clathrin," which is found in every human cell and plays a critical role in transporting materials within them, also plays a key role in cell division, according to new research at the University of California, San Francisco.

The discovery, featured on the cover of the Journal of Cell Biology in August, sheds light on the process of cell division and provides a new angle for understanding cancer. Without clathrin, cells divide erratically and unevenly—a phenomenon that is one of the hallmarks of the disease.

"Clathrin is doing more than we thought it was doing," said Frances Brodsky, DPhil, who led the research. Brodsky is a professor in the UCSF Department of Bioengineering and Therapeutic Sciences, a joint department of the Schools of Pharmacy and Medicine, and she holds joint appointments in Microbiology and Immunology, as well as Pharmaceutical Chemistry.

A Protein Essential for Transportation in More Than One Route

Akin to a three-pronged building block in a child's construction set, clathrin can provide links to create larger complexes. When lots of these proteins are assembled together, they can form tough little cages into which cells packs many of their essential biological molecules—hormones, neurotransmitters, membrane proteins and other payloads that need to be transported throughout the cell.

Once thought to be solely involved in transport inside cells, scientists have uncovered more and more of the protein's hidden functions in the last half-dozen years, including some roles it plays in cell division.

For instance, they learned several years ago about its role in the function of "spindles." Normally when a cell divides, it forms a spindle by laying down tracks of structural proteins, and uses them as scaffolding to separate the cell's DNA (in the form of chromosomes) into two equal collections—one identical set of DNA for each of the new daughter cells. Scientists found that clathrin is involved in stabilizing these spindles.

Now, however, Brodsky and her colleagues have shown that clathrin does even more. They deleted clathrin from cells using a technique called RNA interference, which involves infusing in small genetic fragments that block the cell from making the clathrin. Doing so, Brodsky and her colleagues showed that clathrin stabilizes the structures in dividing cells known as centrosomes.

Tagged with fluorescent chemicals and viewed under a microscope, the centrosomes within a cell that is about to divide look like two glowing eyes peering through the dark. But without clathrin, the team determined, the eyes increase in number.

Brodsky and her colleagues traced this effect to a protein complex formed by one particular component of clathrin called CHC17, which directly stabilizes the centrosome and helps it mature. Deleting CHC17 or chemically inactivating it, led to cells with a strange appearance. These cells contained multiple, fragmented centrosomes instead of the normal two and built abnormal spindles.

This discovery may reveal pathways towards abnormalities of chromosome segregation associated with cancer, said Brodsky.

The article, "Clathrin promotes centrosome integrity in early mitosis through stabilization of centrosomal ch-TOG" by Amy B. Foraker, Stéphane M. Camus, Timothy M. Evans, Sophia R. Majeed, Chih-Ying Chen, Sabrina B. Taner, Ivan R. Corrêa Jr., Stephen J. Doxsey and Frances M. Brodsky appears in the August 20, 2012 issue of the Journal of Cell Biology. See: http://dx.doi.org/10.1083/jcb.201205116

In addition to the group at UCSF, authors on this study are affiliated with New England Biolabs, Inc., in Ipswich, MA, and the University of Massachusetts Medical School in Worcester, MA.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.ucsf.edu

Further reports about: CHC17 DNA UCSF cell death cell division synthetic biology

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>