Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein reveals diabetes risk many years in advance

When a patient is diagnosed with type 2 diabetes, the disease has usually already progressed over several years and damage to areas such as blood vessels and eyes has already taken place.
To find a test that indicates who is at risk at an early stage would be valuable, as it would enable preventive treatment to be put in place.

Researchers at Lund University have now identified a promising candidate for a test of this kind. The findings have been published in the journal Cell Metabolism.

“We have shown that individuals who have above-average levels of a protein called SFRP4 in the blood are five times more likely to develop diabetes in the next few years than those with below-average levels”, says Anders Rosengren, a researcher at the Lund University Diabetes Centre (LUDC), who has led the work on the risk marker.

It is the first time a link has been established between the protein SFRP4, which plays a role in inflammatory processes in the body, and the risk of type 2 diabetes.

Studies at LUDC, in which donated insulin-producing beta cells from diabetic individuals and non-diabetic individuals have been compared, show that cells from diabetics have significantly higher levels of the protein.

It is also the first time the link between inflammation in beta cells and diabetes has been proven.

“The theory has been that low-grade chronic inflammation weakens the beta cells so that they are no longer able to secrete sufficient insulin. There are no doubt multiple reasons for the weakness, but the SFRP4 protein is one of them”, says Taman Mahdi, main author of the study and one of the researchers in Anders Rosengren’s group.

The level of the protein SFRP4 in the blood of non-diabetics was measured three times at intervals of three years. Thirty-seven per cent of those who had higher than average levels developed diabetes during the period of the study. Among those with a lower than average level, only nine per cent developed the condition.

“This makes it a strong risk marker that is present several years before diagnosis. We have also identified the mechanism for how SFRP4 impairs the secretion of insulin. The marker therefore reflects not only an increased risk, but also an ongoing disease process”, says Anders Rosengren.

The marker works independently of other known risk factors for type 2 diabetes, for example obesity and age.

“If we can point to an increased risk of diabetes in a middle-aged individual of normal weight using a simple blood test, up to ten years before the disease develops, this could provide strong motivation to them to improve their lifestyle to reduce the risk”, says Anders Rosengren, adding:

“In the long term, our findings could also lead to new methods of treating type 2 diabetes by developing ways of blocking the protein SFRP4 in the insulin-producing beta cells and reducing inflammation, thereby protecting the cells.”

The research results have been published in the journal Cell Metabolism:
‘Secreted Frizzled-Related Protein 4 Reduces Insulin Secretion and is Overexpressed in Type 2 Diabetes’

For more information:
Anders Rosengren, tel. +46 40 39 11 69, mobile +46 705 31 67 04

The research results have been published in the journal Cell Metabolism:
‘Secreted Frizzled-Related Protein 4 Reduces Insulin Secretion and is Overexpressed in Type 2 Diabetes’

Helga Ekdahl Heun | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>