Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein reveals diabetes risk many years in advance

07.11.2012
When a patient is diagnosed with type 2 diabetes, the disease has usually already progressed over several years and damage to areas such as blood vessels and eyes has already taken place.
To find a test that indicates who is at risk at an early stage would be valuable, as it would enable preventive treatment to be put in place.

Researchers at Lund University have now identified a promising candidate for a test of this kind. The findings have been published in the journal Cell Metabolism.

“We have shown that individuals who have above-average levels of a protein called SFRP4 in the blood are five times more likely to develop diabetes in the next few years than those with below-average levels”, says Anders Rosengren, a researcher at the Lund University Diabetes Centre (LUDC), who has led the work on the risk marker.

It is the first time a link has been established between the protein SFRP4, which plays a role in inflammatory processes in the body, and the risk of type 2 diabetes.

Studies at LUDC, in which donated insulin-producing beta cells from diabetic individuals and non-diabetic individuals have been compared, show that cells from diabetics have significantly higher levels of the protein.

It is also the first time the link between inflammation in beta cells and diabetes has been proven.

“The theory has been that low-grade chronic inflammation weakens the beta cells so that they are no longer able to secrete sufficient insulin. There are no doubt multiple reasons for the weakness, but the SFRP4 protein is one of them”, says Taman Mahdi, main author of the study and one of the researchers in Anders Rosengren’s group.

The level of the protein SFRP4 in the blood of non-diabetics was measured three times at intervals of three years. Thirty-seven per cent of those who had higher than average levels developed diabetes during the period of the study. Among those with a lower than average level, only nine per cent developed the condition.

“This makes it a strong risk marker that is present several years before diagnosis. We have also identified the mechanism for how SFRP4 impairs the secretion of insulin. The marker therefore reflects not only an increased risk, but also an ongoing disease process”, says Anders Rosengren.

The marker works independently of other known risk factors for type 2 diabetes, for example obesity and age.

“If we can point to an increased risk of diabetes in a middle-aged individual of normal weight using a simple blood test, up to ten years before the disease develops, this could provide strong motivation to them to improve their lifestyle to reduce the risk”, says Anders Rosengren, adding:

“In the long term, our findings could also lead to new methods of treating type 2 diabetes by developing ways of blocking the protein SFRP4 in the insulin-producing beta cells and reducing inflammation, thereby protecting the cells.”

The research results have been published in the journal Cell Metabolism:
‘Secreted Frizzled-Related Protein 4 Reduces Insulin Secretion and is Overexpressed in Type 2 Diabetes’

For more information:
Anders Rosengren, tel. +46 40 39 11 69, mobile +46 705 31 67 04
Anders.Rosengren@med.lu.se

The research results have been published in the journal Cell Metabolism:
‘Secreted Frizzled-Related Protein 4 Reduces Insulin Secretion and is Overexpressed in Type 2 Diabetes’

Helga Ekdahl Heun | idw
Further information:
http://www.vr.se
http://www.mires-and-peat.net/map10/map_10_08.pdf

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>