Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein 'rescues' stuck cellular factories

20.03.2014

Using a powerful data-crunching technique, Johns Hopkins researchers have sorted out how a protein keeps defective genetic material from gumming up the cellular works.

The protein, Dom34, appears to "rescue" protein-making factories called ribosomes when they get stuck obeying defective genetic instructions, the researchers report in the Feb. 27 issue of Cell.

"We already knew that binding to Dom34 makes a ribosome split and say 'I'm done,' and that without it, animals can't survive," says Rachel Green, Ph.D., a professor in the Department of Molecular Biology and Genetics at the Johns Hopkins University School of Medicine and a Howard Hughes Medical Institute investigator. "In this study, we saw how the protein behaves in 'real life,' and that it swoops in only when ribosomes are in a very particular type of crisis."

Ribosomes use genetic instructions borne by long molecules called messenger RNA to make proteins that cells need to get things done. Normally, ribosomes move along strands of messenger RNA, making proteins as they go, until they encounter a genetic sequence called a stop codon. At that point, the protein is finished, and specialized recycling proteins help the ribosome disconnect from the RNA and break up into pieces.

Those pieces later come together again on a different RNA strand to begin the process again. From Green's earlier work with Dom34, it appeared that the protein might be one of the recycling proteins that kicks in at stop codons.

To see if that was the case, Green used a method for analyzing the "footprints" of ribosomes developed at the University of California, San Francisco. In 2009, scientists there reported they had mashed up yeast (a single-celled organism that is genetically very similar to higher-order animals) and dissolved any RNA that wasn't protected inside a ribosome at the time. They then took the remaining bits of RNA — those that had been "underfoot" of ribosomes — and analyzed their genetic makeup. That sequence data was then matched to the messenger RNA it came from, giving the researchers a picture of exactly which RNA — and thus, which genes — were being turned into protein at a given moment in time.

Green and postdoctoral fellow Nick Guydosh, Ph.D., adapted this method to see what Dom34 was up to. Guydosh wrote a computer program to compare footprint data from yeast with and without functioning Dom34 genes. The program then determined where on messenger RNAs the ribosomes in cells without Dom34 tended to stall. It was at these points that Dom34 was rescuing the ribosomes in the normal cells, Guydosh says.

"What many of these 'traffic jams' had in common was that the RNA lacked a stop codon where the ribosome could be recycled normally," he says. For example, some of the problem messenger RNAs were incomplete — a common occurrence, as chopping up messenger RNAs is one way cells regulate how much of a protein is produced.

In others, the RNA had a stop codon, but something strange and unexpected was going on in these latter cases: The ribosomes kept going past the place where the stop codon was and went into a no man's land without protein-making instructions. "Ribosomes kept moving but stopped making protein, at least for a time," Guydosh says. "As far as we know, this 'scanning' activity has never been seen before — it was a big surprise."

"What these results show us is why we need Dom34 to survive: It's the only protein that can rescue ribosomes stuck on RNAs," says Green. "Without it, cells eventually run out of the ribosomes they need to make protein."

###

Link to the Cell paper: http://www.cell.com/abstract/S0092-8674%2814%2900162-7

This study was funded by the National Institute of General Medical Sciences (grant number R01GM059425), the Howard Hughes Medical Institute and the Damon Runyon Cancer Research Foundation.

Shawna Williams | EurekAlert!

Further reports about: Medical Medicine Protein RNA RNAs animals factories genes proteins ribosome ribosomes

More articles from Life Sciences:

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

nachricht Scientists from MIPT gain insights into 'forbidden' chemistry
11.02.2016 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

New method opens crystal clear views of biomolecules

11.02.2016 | Life Sciences

Scientists take nanoparticle snapshots

11.02.2016 | Physics and Astronomy

NASA sees development of Tropical Storm 11P in Southwestern Pacific

11.02.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>