Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein related to aging holds breast cancer clues

28.01.2011
The most common type of breast cancer in older women — estrogen and progesterone receptor (ER/PR) positive breast cancer — has been linked to a protein that fends off aging-related cellular damage.

A new study led by Vanderbilt-Ingram Cancer Center researcher David Gius, M.D., Ph.D., now shows how a deficiency in this aging-associated protein may set the stage for these tumors to develop.

The findings, published in Molecular Cell, provide information that could assist in the screening, prevention and treatment of these common age-related cancers.

While the young are certainly not spared cancer's wrath, cancer is primarily a disease of aging, with the majority of cases occurring in people over 50.

However, the biological processes that underlie this association are not clear.

"The connection between aging and cancer is one of the most established phenomena in cancer research," said Gius, associate professor of Cancer Biology, Pediatrics and Radiation Oncology. "The problem to address this clinically significant question is that this field lacks in vivo models to study this."

In the late-1990s, proteins called "sirtuins" were linked to extended lifespan observed in several species maintained on a calorically restricted diet. These nutrient-sensing sirtuin proteins seemed to defend against aging-related cellular damage.

Sirtuins are present in all living organisms, with humans having seven different sirtuin proteins.

"When (the sirtuins) were discovered, it seemed obvious to conclude that there might be a mechanistic connection between the genes that determine length of survival and cancer," Gius said.

Previously, while at the National Cancer Institute, Gius and colleagues created mice lacking some of these sirtuins. They reported last January in Cancer Cell that when they knocked out Sirt3 — a sirtuin localized in the mitochondria, the cellular "power plants" — the mice developed ER/PR positive breast tumors, the most common type of breast cancer in postmenopausal women.

These tumors also exhibited increased levels of damaging free radicals and "reactive oxygen species" (ROS) — including superoxide, the primary metabolite of oxygen in the mitochondria — which provided an important clue as to how Sirt3 deficiency might permit these tumors to develop.

"The mechanism, at least in part, for why these mice develop receptor positive breast cancer is altered mitochondrial ROS, including superoxide," Gius said.

But how deficiency in a longevity gene led to increased ROS was not clear.

Since superoxide is generally removed from the cell with the help of a detoxifying enzyme called manganese superoxide dismutase (MnSOD), Gius hypothesized that the Sirt3 deficiency may abnormally regulate MnSOD.

In the current study, the researchers show that Sirt3 knockout mice have decreased MnSOD activity despite having normal levels of the protein.

Gius and colleagues determined that the MnSOD in Sirt3 knockout mice was abnormally modified (with a chemical "acetyl" group) at a specific amino acid (lysine 122).

This aberrant modification of MnSOD reduced the enzyme's ability to detoxify superoxide and appeared to explain the increase in ROS in Sirt3 knockout mouse tumors.

"These results suggest that aberrant regulation of MnSOD plays a role in receptor positive breast cancer," said Gius.

Gius and colleagues also developed an antibody that can assess the acetylation status of MnSOD, which he says can potentially be used "to screen breast tissue samples to determine what women are at risk for (receptor positive) cancer or for recurrence because of this dysregulation of MnSOD."

Additionally, agents that target the acetylation of this amino acid on MnSOD may be useful as chemopreventive therapies in women at risk of these cancers and of recurrence, he noted.

The research was supported by grants from the National Cancer Institute and the Department of Defense.

Melissa Marino | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>