Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein-printing technique gives snapshots of immune system defense

When Albrecht Durer and other Renaissance artists painstakingly etched images onto plates, swabbed ink into the fine grooves and transferred the images to paper with a press, they never could have guessed that centuries later the same technique would uncover the secrets of human cells.

Whitehead Institute and Massachusetts Institute of Technology researchers have borrowed a technique from such "intaglio" printing to create snapshots describing the behavior of immune cell populations at a moment in time.

The work may aid vaccine research and eventually lead to clinical devices that change the way physicians diagnose and treat infection and disease, suggests J. Christopher Love, a former postdoctoral associate in the lab of Whitehead Member Hidde Ploegh and now an MIT assistant professor of chemical engineering.

For the first time, the method developed by Love and his colleagues lets researchers look at single white blood cells and measure specific characteristics of the antibodies they produce when the body is under attack.

The white blood cells called B cells can offer billions of combinations of antibodies that bind to bacteria, viruses or toxins, flagging the invaders for destruction. "There are no two cells with the exact same signature," notes Hidde Ploegh.

And neither is there much information about what combination of antibodies goes with what target, Ploegh adds. But isolating and keeping B cells alive long enough to investigate them is inefficient and time-consuming, and it has been impossible to fully correlate analyses of all the antibodies.

In recent years, biologists have begun to exploit a set of techniques, collectively called soft lithography, to transfer patterns of biological materials to microarrays, much as Renaissance artists transferred images to paper.

Love came up with a new twist on this idea: individual cells could make the ink.

To test the idea, Love, visiting scientist Craig Story and their colleagues put living mouse B cells into a microengraved rubber device like the tiniest and densest of ice cube trays. There, 20,000 cells, separated into individual compartments, churned out their unique brands of antibodies produced after a series of immunizations.

The researchers sealed the tiny chambers with microarrays—glass microscope slides coated with capture antibodies. The secreted proteins stuck to the glass, seeding it like a printer's plate being imbued with ink.

Next, the scientists stamped out multiple copies of these microarrays. Studying these, the scientists can examine the antibodies expressed by a single cell, in the context of a whole population of cells. The information is extracted and integrated by customized software and the large sets of data are examined much as they are with DNA microarrays.

The first results, imaged and analyzed by graduate student Eliseo Papa of the Harvard/MIT Health Science and Technology Institute, appeared in PNAS online the week of November 3. They gave a snapshot of the diversity of B cells that were generated by a series of immunizations designed to mimic a multi-part vaccination.

This technique could prove a powerful tool for research and medical testing. Currently, "the only accepted measure of immunological protection is a relatively crude test for whether antibodies are present in the blood," Ploegh says. "Knowing not only the level of antibody in a patient's blood but also how effective the antibodies would be in fighting a specific disease would be a big step."

Knowledge gained this way would be vastly helpful for vaccine development. "It's extremely important to have a rapid test to interrogate a vaccine recipient's immune system," allowing widespread testing among a given human population, says Ploegh.

"Nobody really knows in detail what happens between vaccine boosters," adds Papa. "Multiple booster injections are given irrespective of the actual response." If a cost-effective, portable device could work on this method, it could help gauge the progression of vaccine boosters or infectious illnesses on the basis of patients' real-time immune responses, and help doctors weigh treatment options based on those responses.

Moreover, Love says, further development of the technique could make it possible to quickly determine whether an infection is bacterial or viral, figure whether a cancer patient has built up enough "immunity" to his or her cancer to forgo another round of immunotherapy, and obtain complete profiles of an immune response with as little as a drop of blood—a crucial ability when testing infants and children.

Eric Bender | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>