Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein-printing technique gives snapshots of immune system defense

04.11.2008
When Albrecht Durer and other Renaissance artists painstakingly etched images onto plates, swabbed ink into the fine grooves and transferred the images to paper with a press, they never could have guessed that centuries later the same technique would uncover the secrets of human cells.

Whitehead Institute and Massachusetts Institute of Technology researchers have borrowed a technique from such "intaglio" printing to create snapshots describing the behavior of immune cell populations at a moment in time.

The work may aid vaccine research and eventually lead to clinical devices that change the way physicians diagnose and treat infection and disease, suggests J. Christopher Love, a former postdoctoral associate in the lab of Whitehead Member Hidde Ploegh and now an MIT assistant professor of chemical engineering.

For the first time, the method developed by Love and his colleagues lets researchers look at single white blood cells and measure specific characteristics of the antibodies they produce when the body is under attack.

The white blood cells called B cells can offer billions of combinations of antibodies that bind to bacteria, viruses or toxins, flagging the invaders for destruction. "There are no two cells with the exact same signature," notes Hidde Ploegh.

And neither is there much information about what combination of antibodies goes with what target, Ploegh adds. But isolating and keeping B cells alive long enough to investigate them is inefficient and time-consuming, and it has been impossible to fully correlate analyses of all the antibodies.

In recent years, biologists have begun to exploit a set of techniques, collectively called soft lithography, to transfer patterns of biological materials to microarrays, much as Renaissance artists transferred images to paper.

Love came up with a new twist on this idea: individual cells could make the ink.

To test the idea, Love, visiting scientist Craig Story and their colleagues put living mouse B cells into a microengraved rubber device like the tiniest and densest of ice cube trays. There, 20,000 cells, separated into individual compartments, churned out their unique brands of antibodies produced after a series of immunizations.

The researchers sealed the tiny chambers with microarrays—glass microscope slides coated with capture antibodies. The secreted proteins stuck to the glass, seeding it like a printer's plate being imbued with ink.

Next, the scientists stamped out multiple copies of these microarrays. Studying these, the scientists can examine the antibodies expressed by a single cell, in the context of a whole population of cells. The information is extracted and integrated by customized software and the large sets of data are examined much as they are with DNA microarrays.

The first results, imaged and analyzed by graduate student Eliseo Papa of the Harvard/MIT Health Science and Technology Institute, appeared in PNAS online the week of November 3. They gave a snapshot of the diversity of B cells that were generated by a series of immunizations designed to mimic a multi-part vaccination.

This technique could prove a powerful tool for research and medical testing. Currently, "the only accepted measure of immunological protection is a relatively crude test for whether antibodies are present in the blood," Ploegh says. "Knowing not only the level of antibody in a patient's blood but also how effective the antibodies would be in fighting a specific disease would be a big step."

Knowledge gained this way would be vastly helpful for vaccine development. "It's extremely important to have a rapid test to interrogate a vaccine recipient's immune system," allowing widespread testing among a given human population, says Ploegh.

"Nobody really knows in detail what happens between vaccine boosters," adds Papa. "Multiple booster injections are given irrespective of the actual response." If a cost-effective, portable device could work on this method, it could help gauge the progression of vaccine boosters or infectious illnesses on the basis of patients' real-time immune responses, and help doctors weigh treatment options based on those responses.

Moreover, Love says, further development of the technique could make it possible to quickly determine whether an infection is bacterial or viral, figure whether a cancer patient has built up enough "immunity" to his or her cancer to forgo another round of immunotherapy, and obtain complete profiles of an immune response with as little as a drop of blood—a crucial ability when testing infants and children.

Eric Bender | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>