Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein plays unexpected role protecting chromosome tips

18.08.2009
Scientists show 'Swiss Army knife' has surprising functions and a possible tie to metastatic cancer

A protein specialist that opens the genomic door for DNA repair and gene expression also turns out to be a multi-tasking workhorse that protects the tips of chromosomes and dabbles in a protein-destruction complex, a team lead by researchers at The University of Texas M. D. Anderson Cancer Center reports in the Aug. 13 edition of Molecular Cell.

"Instead of being a really important tool dedicated just to regulation of gene transcription, Gcn5 is more like a Swiss Army knife that performs different functions depending on what needs to be done in the cell," said senior author Sharon Dent, Ph.D., professor in M. D. Anderson's Department of Biochemistry and Molecular Biology.

The researchers document a chain of events that starts with depletion of Gcn5, which leads to decreased activity by another protein that protects yet a third protein from destruction. That last protein, TRF1, protects telomeres, dense structures at the end of chromosomes which, like the compressed plastic tips on the ends of a shoelace, keep the chromosome ends intact.

Variation in the gene that expresses the middle protein in this model, ubiquitin specific protease 22 (USP22), is part of an 11-gene signature associated with highly metastatic cancers and poor prognosis, the authors note.

"Our results indicate that the Gcn5 complex regulates not just gene transcription but also protein stability," Dent said. "They also suggest that the role of USP22 in highly aggressive cancers might be due to these new functions."

Telltale telomere damage

Chromosomes are made of DNA that is tightly intertwined with proteins called histones to form chromatin. Chromatin is a condensed structure that forms a natural barrier inhibiting access to DNA. Gcn5 was previously known for its role in a complex of proteins that loosens chromatin to allow access to DNA by the cell's DNA repair machinery and by transcription factors that launch the process of gene expression.

"Years ago a student in my lab found that mice deficient in Gcn5 died early during embryonic development," Dent said. "The reason they died, in part, was that telomeres were fusing together. There was no reason to think Gcn5 would have anything at all to do with telomeres, so these fusions were quite puzzling."

Clues for protein's role in metastatic cancer

While Dent and colleagues attacked the problem, a research group elsewhere discovered that USP22 is active in the same protein complex in which Gcn5 operates. USP22 protects proteins by pealing off ubiquitin molecules that attach to the proteins and mark them for destruction by the proteasome complex.

A literature review showed that TRF1 carries a ubiquitin mark that makes it vulnerable to degradation by the proteasome.

"TRF1 normally resides at the telomeres and tells the cell that this is a normal chromosome end and you should leave it alone," Dent said. "If you don't have enough TRF1, the cell now thinks these chromosomal ends are abnormal and tries to fix them when they shouldn't be fixed."

Putting it all together, the team hypothesized that USP22 protects telomeres by knocking ubiquitins off of TRF1, sparing it from destruction. "Our model is of a pathway in which depletion of Gcn5 reduces USP22 activity, causing greater TRF1 ubiquination, which leads to TRF1 destruction and that leads to telomere problems," Dent said.

In the Molecular Cell paper, the researchers show that depletion of Gcn5 leads to chromosomal fusion and damage in mouse embryonic cell lines and also reduces the level of TRF1. They then demonstrate that USP22 interacts with TRF1 and is required for that protein to remain stable. Additional experiments identified ubiquitin removal is the mechanism by which USP22 protects TRF1.

Dent and colleagues continue to look for new proteins and cellular processes that are impaired in cells lacking GCN5 or USP22. "There must be a reason why USP22 is over expressed in highly metastatic cancers and we are encouraged that we will be able to provide important clues for this process," Dent said.

Co-authors with Dent and first author Boyko S. Atanassov, Ph.D., are Yvonne Evrard, Ph.D., and Zhijing Zhang, Ph.D, all of M. D. Anderson's Department of Biochemistry and Molecular Biology, Program in Genes and Development, and Center for Cancer Epigenetics; Asha Multani, Ph.D., of M. D. Anderson's Department of Genetics; and Sandy Chang, Ph.D., of the departments of Genetics and Hematopathology; and Lászlo Tora, Ph.D., and Didier Devys, M.D., Ph.D., of the Institut de Génétique et de Biologie Moléculaire et Cellulaire at the Université Louis Pasteur de Strasbourg in France.

Funding was provided by grants from the National Institutes of Health and from the Agence Nationale de la Recherche, and the Foundation de la Recherche Medicale in France.

About MD Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For six of the past eight years, including 2009, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>