Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Protein To Planes And Pigskin

23.09.2011
Discovery In Insects' Skin Could Lead To Improved Pest Control, New Bioplastics Technology

Scientists may soon be able to make pest insects buzz off for good or even turn them into models for new technologies, all thanks to a tiny finding with enormous potential.

Sujata Chaudhari, a Kansas State University doctoral candidate in biochemistry, Pune, India, is the senior author of a study that was published this week in the Proceedings of the National Academy of Sciences, also called PNAS. Her work includes a discovery that could expand the possibilities for selective pest control and new biomaterials like football padding or lightweight aircraft components -- and all by debunking a more than 50-year-old belief about the protective shell of insects.

The study looks at the red flour beetle and examines the dynamic biochemical processes the insect uses to replace the protective coating on its skin while shedding its old skin. This coating is called the cuticle and is the main structural and protective part of an insect's exoskeleton, creating a stiff but lightweight outer shell or flexible wings and joints.

"As an insect develops, it outgrows its rigid skin and must periodically get rid of its old cuticle and synthesize a new, larger one," Chaudhari said. "This process of shedding the old cuticle is called molting."

In order to molt, the insect's body secretes a fluid loaded with an enzyme called chitinase, which is pronounced ky-tin-ayes. Chitinase breaks down chitin, the main component of the cuticle, and consequently aids in dissolving the insect's old cuticle. For decades it has been assumed that chitinase does not come into contact with and dissolve the insect's newly formed cuticle because of an impenetrable envelope between the old and new cuticles, Chaudhari said.

But Chaudhari and her colleagues found that's not actually the case.

Instead, their research shows that chitinase is present in the new cuticle as well as in the old cuticle. Moreover, they found that the enveloping layer that separates the two cuticles is not responsible for protecting the new cuticle from being dissolved by chitinase. Rather it is the protein called Knickkopf -- pronounced kuh-NICK-kaw-pff.

"Think of Knickkopf as a fire retardant, chitinase as a fire, and the insect's cuticle as the wall of a house," said Subbaratnam Muthukrishnan, a university distinguished professor of biochemistry at Kansas State University, Chaudhari's adviser and a collaborator on the study. "During molting, it's like the house is on fire, but the fire is only burning things on the outside. Everything inside is safe because there's a fire retardant wall."

Although this discovery that chitinase is stopped by a protein and not a physical barrier was made in the red flour beetle, Tribolium castaneum, the same protein is found in all other insect species examined, and probably has the same chitin-protective function, Chaudhari said. Most likely the same holds true for all arthropods: insects, arachnids, crustaceans, nematodes and other organisms. That's a game-changer for scientists and inventors.

In the future, agricultural crop pests like the red flour beetle could find themselves the targets of insecticides or interfering RNAs that shut down the Knickkopf protein, leaving the insect's body open to disease or to molting defects, said Richard Beeman, a Kansas State University entomology adjunct professor, researcher with the U.S. Department of Agriculture and collaborator on the project. Additionally, the beetle's cuticle could be replicated into new lightweight body armor, prosthetics or materials for flight.

"The cuticle is a gigantic puzzle, and we're slowly finding what the pieces are in the puzzle and how they interact to make the cuticle, organize it and digest it," said Karl Kramer, a Kansas State University emeritus biochemistry adjunct professor and collaborator with the USDA, who also worked on the project. "In solving the puzzle, we could target these composition materials for improved insect control. We could also develop biomaterial that could be used in agriculture or medicine -- or even make K-State football coach Bill Snyder some new protective padding for the Wildcats."

The study, "Knickkopf protein protects and organizes chitin in the newly synthesized insect exoskeleton," includes team members Yoonseong Park, a Kansas State University associate professor of entomology; Daniel Boyle, a Kansas State University research assistant professor of biology; Yasuyuki Arakane at Chonnam National University in Korea; Bernard Moussian at the University of Tuebingen in Germany; and Charles Specht at the University of Massachusetts. It was funded by a grant from the National Science Foundation.

Sujata Chaudhari, sujatasv@k-state.edu;
and Subbaratnam Muthukrishnan, 785-532-6939, smk@k-state.edu

Sujata Chaudhari | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>