Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein paves the way for correct stem cell differentiation

A single embryonic stem cell can develop into more than 200 specialized cell types that make up our body.

This maturation process is called differentiation and is tightly regulated through strict control of gene activity. If the regulation is lost, specialized cells cannot develop correctly during development.

Fbxl10 allow PRC1 to bind to the DNA structure and enable PRC1 to silence the gene

In adulthood, the specialized cells may forget their identity and develop into cancer cells. Research from BRIC, University of Copenhagen, has identified a crucial role of the molecule Fbxl10 in differentiation of embryonic stem cells and suggests the molecule as a new potential target for cancer therapy.

“Our new results show that this molecule is required for the function of one of the most important molecular switches that constantly regulates the activity of our genes. If Fbxl10 is not present in embryonic stem cells, the cells cannot differentiate properly and this can lead to developmental defects”, says Professor Kristian Helin, who heads the research group behind the new findings.

Fbxl10 recruits and activates genetic switches

The Polycomb protein complexes PRC1 and PRC2 are some of the most important genetics switches, which control the fate of individual cells through negative regulation of gene activity. The mechanism by which PRCs are recruited to DNA has been elusive as they are not capable of binding DNA directly. The new results from the Helin research group provide a mechanism for how the PRCs are recruited to the genes that are to be silent.

“Our results show that Fbxl10 is essential for recruiting PRC1 to genes that are to be silenced in embryonic stem cells. Fbxl10 binds directly to DNA and to PRC1, and this way it serves to bring PRC1 to specific genes. When PRC1 is bound to DNA it can modify the DNA associated proteins, which lead to silencing of the gene to which it binds”, says postdoc Xudong Wu, who has led the experimental part of the investigation.

Fbxl10 is a potential target for cancer therapy

Timing of gene activity is not only crucial during development, but has to be maintained throughout the lifespan of any cell. Some genes are active at a certain times, but inactive at other times.. Here PRC1 comes into play. PRC1 is dynamically recruited to and dissociated from genes according to the needs of our organism. When cancer strikes, this tight regulation of gene activity is often lost and the cells are locked in a less differentiated stage. This loss of differentiation and the accumulation of other mutations allow the cancer cells to undergo indefinite self-renewal through endless cell divisions, an ability that normal differentiated cells are prohibited from through tight gene regulation.

“Given the emerging relationship between cancer and stem cells, our findings may implicate that an aberrant activity of Fbxl10 can disturb PRC function and promote a lack of differentiation in our cells. This makes it worth studying whether blocking the function of Fbxl10 could be a strategy for tumour therapy”, says Xudong Wu.

And that is exactly what the researchers want to try. In collaboration with the biotech company EpiTherapeutics, the researchers want to develop inhibitors to Fbxl10 as a potential novel therapy for cancer.

Original article: The results are published in the journal Molecular Cell on February 7, 2013: Wu et al.: Fbxl10/Kdm2b Recruits Polycomb Repressive Complex 1 to CpG Islands and Regulates H2A Ubiquitylation.

The work was supported by grants from the Danish National Research Foundation, the Danish Cancer Society, the Novo Nordisk Foundation, and the Excellence Program of the University of Copenhagen.

Professor Kristian Helin
Phone: +45 35325668

postdoc Xudong Wu
Phone: +45 35325818

Research Coordinator Katrine Sonne-Hansen
Phone: +45 35325648
Mobile: +45 25854742

Katrine Sonne-Hansen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>