Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein paves the way for correct stem cell differentiation

08.02.2013
A single embryonic stem cell can develop into more than 200 specialized cell types that make up our body.

This maturation process is called differentiation and is tightly regulated through strict control of gene activity. If the regulation is lost, specialized cells cannot develop correctly during development.


Fbxl10 allow PRC1 to bind to the DNA structure and enable PRC1 to silence the gene

In adulthood, the specialized cells may forget their identity and develop into cancer cells. Research from BRIC, University of Copenhagen, has identified a crucial role of the molecule Fbxl10 in differentiation of embryonic stem cells and suggests the molecule as a new potential target for cancer therapy.

“Our new results show that this molecule is required for the function of one of the most important molecular switches that constantly regulates the activity of our genes. If Fbxl10 is not present in embryonic stem cells, the cells cannot differentiate properly and this can lead to developmental defects”, says Professor Kristian Helin, who heads the research group behind the new findings.

Fbxl10 recruits and activates genetic switches

The Polycomb protein complexes PRC1 and PRC2 are some of the most important genetics switches, which control the fate of individual cells through negative regulation of gene activity. The mechanism by which PRCs are recruited to DNA has been elusive as they are not capable of binding DNA directly. The new results from the Helin research group provide a mechanism for how the PRCs are recruited to the genes that are to be silent.

“Our results show that Fbxl10 is essential for recruiting PRC1 to genes that are to be silenced in embryonic stem cells. Fbxl10 binds directly to DNA and to PRC1, and this way it serves to bring PRC1 to specific genes. When PRC1 is bound to DNA it can modify the DNA associated proteins, which lead to silencing of the gene to which it binds”, says postdoc Xudong Wu, who has led the experimental part of the investigation.

Fbxl10 is a potential target for cancer therapy

Timing of gene activity is not only crucial during development, but has to be maintained throughout the lifespan of any cell. Some genes are active at a certain times, but inactive at other times.. Here PRC1 comes into play. PRC1 is dynamically recruited to and dissociated from genes according to the needs of our organism. When cancer strikes, this tight regulation of gene activity is often lost and the cells are locked in a less differentiated stage. This loss of differentiation and the accumulation of other mutations allow the cancer cells to undergo indefinite self-renewal through endless cell divisions, an ability that normal differentiated cells are prohibited from through tight gene regulation.

“Given the emerging relationship between cancer and stem cells, our findings may implicate that an aberrant activity of Fbxl10 can disturb PRC function and promote a lack of differentiation in our cells. This makes it worth studying whether blocking the function of Fbxl10 could be a strategy for tumour therapy”, says Xudong Wu.

And that is exactly what the researchers want to try. In collaboration with the biotech company EpiTherapeutics, the researchers want to develop inhibitors to Fbxl10 as a potential novel therapy for cancer.

Original article: The results are published in the journal Molecular Cell on February 7, 2013: Wu et al.: Fbxl10/Kdm2b Recruits Polycomb Repressive Complex 1 to CpG Islands and Regulates H2A Ubiquitylation.

The work was supported by grants from the Danish National Research Foundation, the Danish Cancer Society, the Novo Nordisk Foundation, and the Excellence Program of the University of Copenhagen.

Contact
Professor Kristian Helin
Phone: +45 35325668

postdoc Xudong Wu
Phone: +45 35325818

Research Coordinator Katrine Sonne-Hansen
Phone: +45 35325648
Mobile: +45 25854742

Katrine Sonne-Hansen | EurekAlert!
Further information:
http://www.bric.ku.dk

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>