Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein origami: Quick folders are the best

31.01.2013
The evolutionary history of proteins shows that protein folding is an important factor. Especially the speed of protein folding plays a key role.

This was the result of a computer analysis carried out by researchers at the Heidelberg Institute for Theoretical Studies (HITS) and the University of Illinois at Urbana Champaign. For almost four billions of years, there has been a trend towards faster folding.


Nature has come up with numerous forms of protein folding. Most of these forms emerged after the biological Big Bang, which took place approximately 1.5 billion years ago. According to the study, folding speed belongs to the important factors of this diversification.
Image: Cedric Debes / HITS

“The reason might be that this makes proteins less susceptible to clumping, and that they can carry out their tasks faster,” says Dr. Frauke Gräter (HITS) who led the analysis. The results were now published in PLoS Computational Biology.

Proteins are elementary building blocks of life. They often perform vital functions. In order to become active, proteins have to fold into three-dimensional structures. Misfolding of proteins leads to diseases such as Alzheimer’s or Creutzfeld-Jakob. So which strategies did nature develop over the course of evolution to improve protein folding?

To examine this question, the chemist Dr. Frauke Gräter (Heidelberg Institute for Theoretical Studies) looked far back into the history of the Earth. Together with her colleague Prof. Gustavo Caetano-Anolles at the University of Illinois at Urbana-Champaign, she used computer analyses to examine the folding speed of all currently known proteins. The researchers have seen the following trend: For most of protein evolution, the folding speed increased, from archaea to multicellular organisms. However, 1.5 billion years ago, more complex structures emerged and caused a biological ‘Big Bang’. This has led to the development of slower-folding protein structures. Remarkably, the tendency towards higher speed in protein origami overall dominated, regardless of the length of amino acid chains constituting the proteins.

“The reason for higher folding speed might be that this makes proteins less susceptible to aggregation, so that they can carry out their tasks faster,” says Dr. Frauke Gräter, head of the Molecular Biomechanics research group at HITS.

Genetics and biophysics for large volumes of data

In their work, the researchers used an interdisciplinary approach combining genetics and biophysics. “It is the first analysis to combine all known protein structures and genomes with folding rates as a physical parameter,” says Dr. Gräter.

The analysis of 92,000 proteins and 989 genomes can only be tackled with computational methods. The group of Gustavo Caetano-Anolles, head of the Evolutionary Bioinformatics Laboratory at Urbana-Champaign, had originally classified most structurally known proteins from the Protein Database (PDB) according to age. For this study, Minglei Wang in his laboratory identified protein sequences in the genomes, which had the same folding structure as the known proteins. He then applied an algorithm to compare them to each other on a time scale. In this way, it is possible to determine which proteins became part of which organism and when. After that, Cedric Debes, a member of Dr. Gräter’s group, applied a mathematical model to predict the folding rate of proteins.

The individual folding steps differ in speed and can take from nanoseconds to minutes. No microscope or laser would be able to capture these different time scales for so many proteins. A computer simulation calculating all folding structures in all proteins would take centuries to run on a mainframe computer. This is why the researchers worked with a less data-intensive method. They calculated the folding speed of the single proteins using structures that have been previously determined in experiments: A protein always folds at the same points. If these points are far apart from each other, it takes longer to fold than if they lie close to each other. With the so-called Size-Modified Contact Order (SMCO), it is possible to predict how fast these points will meet and thus how fast the protein will fold, regardless of its length.

“Our results show that in the beginning there were proteins which could not fold very well,” Dr. Gräter summarizes. “Over time, nature improved protein folding so that eventually, more complex structures such as the many specialized proteins of humans were able to develop.”

Shorter and faster for evolution

Amino acid chains, which make up proteins, also became shorter over the course of evolution. This was another factor contributing to the increase in folding speed, as has been shown in the study.

“Since eukaryotes, i.e. organisms with a cell nucleus, emerged, protein folding became somewhat less crucial,” says Frauke Gräter. Since then, nature has developed a complex machinery to prevent and repair misfolded proteins. One example are the so-called chaperones. “It seems as if nature would accept a certain level of disorder in order to develop structures which could not have evolved otherwise.”

The number of known genomes and protein structures is continually increasing, thus expanding the data bases for further computer analyses of protein evolution. Frauke Gräter says “With future analyses of protein evolution, it might be possible for us to answer the related question whether proteins became more stable or more flexible over their billion-year-long history of evolution.”

The study was supported by the Klaus Tschira Foundation and the National Science Foundation of the US.
Scientific publication:
Debès C, Wang M, Caetano-Anollés G, Gräter F (2013) Evolutionary Optimization of Protein Folding. PLoS Comput Biol 9(1): e1002861. doi:10.1371/journal.pcbi.1002861
URL: http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002861

Press contact:
Dr. Peter Saueressig
Public Relations
Heidelberg Institute for Theoretical Studies (HITS)
Tel: +49-6221-533-245
peter.saueressig@h-its.org

Scientific Contact:
Dr. Frauke Gräter
Molecular Biomechanics group
Heidelberg Institute for Theoretical Studies (HITS)
Tel: +49-6221-533-267
frauke.graeter@h-its.org

Prof. Dr. Gustavo Caetano-Anollés
Evolutionary Bioinformatics Laboratory
Dep. Of Crop Sciences, University of Illinois at Urbana-Champaign
332 National Soybean Res Ctr, 1101 West Peabody Drive
Urbana, IL 61801
+1 (217) 333-8172
gca@illinois.edu
http://cropsci.illinois.edu/directory/gca
HITS
HITS (Heidelberg Institute for Theoretical Studies) is a private, non-profit research institute. As a research institute of the Klaus Tschira Foundation, HITS conducts basic research from astrophysics to cell biology, with a focus on processing and structuring large volumes of data. The institute is jointly managed by Klaus Tschira and Andreas Reuter.

Evolutionary Bioinformatics Laboratory, University of Illinois at Urbana-Champaign

The Evolutionary Bioinformatics Laboratory at the University of Illinois focuses on creative ways to mine, visualize and integrate data from structural and functional genomic research, with a special focus on evolution of macromolecular structure and networks in biology.

Dr. Peter Saueressig | idw
Further information:
http://www.h-its.org
http://www.h-its.org/english/press/pressreleases.php?we_objectID=951
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002861

More articles from Life Sciences:

nachricht Team pinpoints genes that make plant stem cells, revealing origin of beefsteak tomatoes
26.05.2015 | Cold Spring Harbor Laboratory

nachricht DNA double helix does double duty in assembling arrays of nanoparticles
26.05.2015 | DOE/Brookhaven National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Analytical lamps monitor air pollution in cities

26.05.2015 | Ecology, The Environment and Conservation

DNA double helix does double duty in assembling arrays of nanoparticles

26.05.2015 | Life Sciences

Turn That Defect Upside Down

26.05.2015 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>