Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New protein linked to Alzheimer's disease

25.05.2011
After decades of studying the pathological process that wipes out large volumes of memory, scientists at The Feinstein Institute for Medical Research discovered a molecule called c-Abl that has a known role in leukemia also has a hand in Alzheimer's disease. The finding, reported in the June 14th issue of the Journal of Alzheimer's Disease, offers a new target for drug development that could stave off the pathological disease process.

Peter Davies, PhD, head of the Feinstein Institute's Litwin-Zucker Center for Research in Alzheimer's Disease, became interested in c-Abl when he found that the protein was part of the plaques and tangles that crowd the brains of Alzheimer's patients.

The protein c-Abl is a tyrosine kinase involved in cell differentiation, cell division and cell adhesion. In patients with chronic myeloid leukemia (CML), c-Abl is turned up in B cells. Inhibiting c-Abl with the cancer drug Gleevec prevents cell division. There was quite a lot known about c-Abl when Dr. Davies began thinking about its possible role in Alzheimer's. He was looking at kinases that phosphorylate tau, the protein that accumulates inside of the neurons during the disease process.

Dr. Davies questioned whether activated c-Abl turned on the cell cycle and could kill adult cells. He designed the study to test this idea and found that turning on the cell cycle in adult brain damages the cells. In their current study, the investigators devised a clever way to activate c-Abl in neurons of normal adult mice. They turned on human c-Abl genes in two different regions – the hippocampus and the neocortex – in adult mice and discovered abundant cell death, especially in the hippocampus. "You don't even need to count, you can just look and see holes in the cell layers of the hippocampus," said Dr. Davies. "It is stunning. Even before the neurons die, there is florid inflammation."

He said that the animal model is ideal for testing the benefit of drugs that turn off c-Abl. While Gleevec works in CML, it does not cross the blood-brain barrier so it would not be useful. Dr. Davies and his colleagues are looking for other drugs that inhibit c-Abl and can get into the brain. "We have a great model to test compounds for Alzheimer's disease. Will regulating c-Abl make a difference for patients? We won't know unless we try it in double blind clinical trials."

The researchers are now working to understand the mechanism of cell death. They are also investigating why males die considerably sooner than females – 12 to 15 weeks compared to 24 to 26 weeks. "It is an incredibly interesting model," said Dr. Davies. "If c-Abl is important we can learn how it works."

The paper detailing the findings has been published in an early online version. It is scheduled for publication in the June 14th issue of the Journal of Alzheimer's Disease (http://www.j-alz.com).

About The Feinstein Institute for Medical Research

Headquartered in Manhasset, NY, The Feinstein Institute for Medical Research is home to international scientific leaders in Parkinson's disease, Alzheimer's disease, psychiatric disorders, rheumatoid arthritis, lupus, sepsis, inflammatory bowel disease, diabetes, human genetics, leukemia, lymphoma, neuroimmunology, and medicinal chemistry. The Feinstein Institute, part of the North Shore-LIJ Health System, ranks in the top 6th percentile of all National Institutes of Health grants awarded to research centers. For more information: www.FeinsteinInstitute.org or www.feinsteininstitute.typepad.com

Jamie Talan | EurekAlert!
Further information:
http://www.nshs.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>