Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New protein linked to Alzheimer's disease

25.05.2011
After decades of studying the pathological process that wipes out large volumes of memory, scientists at The Feinstein Institute for Medical Research discovered a molecule called c-Abl that has a known role in leukemia also has a hand in Alzheimer's disease. The finding, reported in the June 14th issue of the Journal of Alzheimer's Disease, offers a new target for drug development that could stave off the pathological disease process.

Peter Davies, PhD, head of the Feinstein Institute's Litwin-Zucker Center for Research in Alzheimer's Disease, became interested in c-Abl when he found that the protein was part of the plaques and tangles that crowd the brains of Alzheimer's patients.

The protein c-Abl is a tyrosine kinase involved in cell differentiation, cell division and cell adhesion. In patients with chronic myeloid leukemia (CML), c-Abl is turned up in B cells. Inhibiting c-Abl with the cancer drug Gleevec prevents cell division. There was quite a lot known about c-Abl when Dr. Davies began thinking about its possible role in Alzheimer's. He was looking at kinases that phosphorylate tau, the protein that accumulates inside of the neurons during the disease process.

Dr. Davies questioned whether activated c-Abl turned on the cell cycle and could kill adult cells. He designed the study to test this idea and found that turning on the cell cycle in adult brain damages the cells. In their current study, the investigators devised a clever way to activate c-Abl in neurons of normal adult mice. They turned on human c-Abl genes in two different regions – the hippocampus and the neocortex – in adult mice and discovered abundant cell death, especially in the hippocampus. "You don't even need to count, you can just look and see holes in the cell layers of the hippocampus," said Dr. Davies. "It is stunning. Even before the neurons die, there is florid inflammation."

He said that the animal model is ideal for testing the benefit of drugs that turn off c-Abl. While Gleevec works in CML, it does not cross the blood-brain barrier so it would not be useful. Dr. Davies and his colleagues are looking for other drugs that inhibit c-Abl and can get into the brain. "We have a great model to test compounds for Alzheimer's disease. Will regulating c-Abl make a difference for patients? We won't know unless we try it in double blind clinical trials."

The researchers are now working to understand the mechanism of cell death. They are also investigating why males die considerably sooner than females – 12 to 15 weeks compared to 24 to 26 weeks. "It is an incredibly interesting model," said Dr. Davies. "If c-Abl is important we can learn how it works."

The paper detailing the findings has been published in an early online version. It is scheduled for publication in the June 14th issue of the Journal of Alzheimer's Disease (http://www.j-alz.com).

About The Feinstein Institute for Medical Research

Headquartered in Manhasset, NY, The Feinstein Institute for Medical Research is home to international scientific leaders in Parkinson's disease, Alzheimer's disease, psychiatric disorders, rheumatoid arthritis, lupus, sepsis, inflammatory bowel disease, diabetes, human genetics, leukemia, lymphoma, neuroimmunology, and medicinal chemistry. The Feinstein Institute, part of the North Shore-LIJ Health System, ranks in the top 6th percentile of all National Institutes of Health grants awarded to research centers. For more information: www.FeinsteinInstitute.org or www.feinsteininstitute.typepad.com

Jamie Talan | EurekAlert!
Further information:
http://www.nshs.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>