Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Provides Link Between Calcium Signaling in Excitable and Non-Excitable Cells

05.10.2010
A calcium-sensing protein, STIM1, known to activate store-operated calcium channels has been found to also inhibit voltage-operated calcium channels, according to researchers at Temple University.

The researchers published their findings, The Calcium Store Sensor, STIM1, Reciprocally Controls Orai and Cav1.2 Channels, in the Oct. 1 issue of Science magazine (www.sciencemag.org).

Calcium, not just important for bones and teeth, is a universal signaling agent that is pivotal in controlling a wide range of cell functions including fast muscle and nerve responses and slower response such as cell division, cell growth, apoptosis or programmed cell death and even fertilization of eggs.

Calcium is stored in cells and rapidly released out and pumped back to control things like contraction of muscle or the triggering of immune cells said Donald Gill, Professor and Chair of Biochemistry in Temple’s School of Medicine and the study’s lead researcher.

He said that the STIM1 protein, which he helped discover about 5 years ago, was found to play a major role in sensing the low levels of calcium in cell stores and activating the highly selective Orai calcium channel to allow calcium to flow back into the cell.

“We thought it seemed crazy that the STIM1 protein goes through this incredible dance but the only thing it does is activate the Orai channel,” he said. “It seemed difficult to believe it only had this one specific function.”

About two years ago, Gill and his colleagues noticed that in addition to activating the Orai channel to allow calcium to trickle back into the cell stores, STIM1 was also inhibiting the function of the crucial and widespread voltage-operated calcium channel, known as the L-type—channel.

“At the time, we thought only electrically excitable cells, like cardiac, neural and skeletal cells, had L-type (or long-lasting) calcium channels,” he said. “So it was surprising that the STIM1 protein known to function mostly in non-excitable cells was having a pretty profound effect on the L-type calcium channels”.

“This is particularly true in tissue like smooth muscle where it is sort of like a hybrid between an excitable and a non-excitable cell, because it has the voltage-operated calcium channel and the Orai calcium channel, as well as the very powerful STIM sensing system,” he said.

Gill said that the researchers’ finding gives a common mechanism for calcium signaling in both excitable and non-excitable cells, a link that was never before known.

“It’s a very basic finding, but it’s another whole area of control that people didn’t know about before,” he said. “They knew there were L-type calcium channels in many non-excitable cells, but they didn’t seem to have any function. Now it seems very possible that the reason they didn’t function is that the STIM1 protein was suppressing their function.”

The study was funded by grants from the National Institutes of Health and Novartis Institutes for Biomedical Research.

Preston M. Moretz | Newswise Science News
Further information:
http://www.temple.edu

Further reports about: Calcium L-type Non-Excitable Protein STIM1 Signaling immune cell methanol fuel cells

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>