Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Kinase Akt Identified as Arbiter of Cancer Stem Cell Fate, According to Penn Study

21.12.2012
The protein kinase Akt is a key regulator of cell growth, proliferation, metabolism, survival, and death. New work on Akt’s role in cancer stem cell biology from the lab of senior author Honglin Zhou, MD, PhD and Weihua Li, co-first author, both from the Center for Resuscitation Sciences, Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, and Xiaowei Xu, Department of Pathology and Laboratory Medicine, appears in Molecular Cell. The findings were also highlighted in Nature and Science reviews.

This new research shows that Akt may be the key as to why cancer stem cells are so hard for the body to get rid of. It has been documented that frequent hyperactivation of Akt kinases occurs in many types of human solid tumors and blood malignancies. Prior to this work, Akt was also shown to play a pivotal role in the fate of other types of stem cells, though those cellular mechanisms are still unclear.

“When I came to Penn in 2009, my lab first found that Akt regulates the activity of the protein Oct4,” explains Zhou. Oct4 is one of the four transcriptional factors used to generate induced pluripotent stem cells, or iPS cells. In 2006, Kyoto University researcher and Nobel Prize winner Shinya Yamanaka expressed four proteins – Oct 4 was one of the - in mouse somatic cells to rewind their genetic clocks, converting them into embryonic-like iPS cells.

The biochemical experiments outlined in the Molecular Cell paper confirmed that Oct4 interacts directly with Akt and the adding of phosphate molecules to Oct4 by Akt regulates its stability, where it localizes in a cell, and its effect on gene expression. Akt phosphorylating Oct4 has the effect of making Oct4 migrate into the nucleus, where it interacts with other transcription factors and regulates target genes transcription.

The findings were further extended into embryonal carcinoma cells, which are derived from teratocarcinomas and often considered the malignant counterparts to embryonic stem cells (ESCs). The team showed that embryonal carcinoma cells with deregulated Akt activation and more phosphorylated Oct4 are more resistant to cell death signals such as ultraviolet irradiation and high glucose treatment.

Since Akt activation is often deregulated in cancer and Oct4 expression is upregulated in cancer stem cells of various types of cancer, the researchers are studying whether the Akt/Oct4 pathway plays similar roles in other types of cancer stem cells in addition to embryonal carcinoma cells. If true, Akt inhibitor may be developed as a new drug for killing cancer stem cells in cancer therapy.

The Molecular Cell work was been done in collaboration with Binghui Shen and Yingjie Wang from Zejiang University in China.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $479.3 million awarded in the 2011 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2011, Penn Medicine provided $854 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>