Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein involved in cystic fibrosis also plays role in emphysema, chronic lung disease

30.12.2010
A team of Johns Hopkins Children's Center researchers has discovered that a protein involved in cystic fibrosis (CF) also regulates inflammation and cell death in emphysema and may be responsible for other chronic lung diseases.

The findings, published online in the December issue of The Journal of Immunology, pave the way toward new treatments to prevent lung damage caused by infections or cigarette smoke in emphysema.

The protein, called CFTR (cystic fibrosis transmembrane conductance regulator), is already well known for its role in transporting chloride in and out of cells. In CF, the protein's chloride-carrying ability is absent due to genetic mutations, resulting in the buildup of thick sticky mucus in the lungs, which causes lung infections and breathing problems.

But the new Hopkins study indicates that CFTR is involved in immune regulation and immune response on a far wider scale. The research — conducted in mice and using lung tissue from people with and without emphysema — shows that those with lung damage from emphysema had less CFTR on the cell surface and that changes in the level of CFTR corresponded directly to disease severity. Decreases in CFTR also corresponded to increased buildup in the lung cells of a fatty molecule called ceramide, a well-known trigger of inflammation and cell death. Thus, the researchers say, by regulating ceramide's inflammation-causing activity, CFTR appears to be a watchdog for inflammation and cell death.

"Our findings suggest that CFTR is a multi-tasker protein that is not only involved in chloride transport but also in regulating cell death and inflammation by keeping in check the rampant and dangerous accumulation of ceramide," said principal investigator Neeraj Vij, Ph.D., a pulmonary researcher at Hopkins Children's and assistant professor at the Johns Hopkins University School of Medicine.

To elucidate the role played by cigarette smoking — the leading cause of emphysema — the researchers analyzed CFTR and ceramide levels in lung tissue obtained from non-smokers and from light and heavy former or current smokers. To further explore the link between cigarette smoke, CFTR and ceramide, the researchers compared lung tissue from mice with "virgin" lungs never exposed to smoke to tissue from the lungs of mice exposed to cigarette smoke for five hours a day over five days. The lungs of smoke-exposed mice had decreased CFTR expression and increased ceramide levels, thus confirming the role of cigarette smoke in lung damage. The heavier the smoking, the greater the lung damage, the lower the CFTR expression and the higher the ceramide accumulation, the researchers noted, clearly linking CFTR and ceramide levels to smoking history and disease severity.

Beyond clarifying the link between CFTR, ceramide and lung damage, the Hopkins team explained just how CFTR causes ceramide to trigger lung-damaging inflammation. Analyzing lung cells from people and mice lacking CFTR in their cell membrane under a microscope and with a technique called flow cytometry that captures changes in inflammatory and protein markers, the scientists noticed increased clustering of ceramide molecules on sections of the cell membrane called lipid rafts, known to be hot spots where inflammatory signaling proteins congregate. This clustering, the researchers said, leads to increased inflammatory signaling, greater inflammation and cell damage, but cells with normal CFTR had no such clustering. Apparently, the researchers say, when functioning properly CFTR keeps a lid on the signaling activity of inflammatory receptors by preventing them from clustering, thus warding off inflammation and lung damage.

"We anticipate that membrane CFTR and ceramide may turn out to be useful predictors of susceptibility to lung damage from smoking and infections and may be tailored for drug therapy to alter disease course," Vij said.

To further test their hypothesis, the researchers used two types of ceramide inhibitors to treat mice with lung damage caused by a bacterial infection. One of the inhibitors, FB1, successfully decreased ceramide buildup in mice with intact CFTR but failed to stop ceramide accumulation in mice with absent CFTR, as is the case in CF. However, the other type of inhibitor, AMT, curbed ceramide activity in the mice with the absent CFTR, while failing to do so in those with decreased CFTR.

"Each inhibitor appeared to be effective based on the levels of membrane CFTR and ceramide, suggesting two different therapies tailored to treat lung damage stemming from two distinct lung disorders — emphysema and CF," said co-investigator Manish Bodas, Ph.D., a post-doctoral fellow in Vij's lab at Hopkins Children's.

The research was funded by the National Institutes of Health and the Flight Attendant Medical Research Institute. Co-investigators in the study included Taehong Min and Steven Mazur, both of Hopkins.

Related:

Neeraj Vij Profile http://www.hopkinschildrens.org/Neeraj-Vij-PhD.aspx

Neeraj Vij Lab http://web.jhu.edu/vij

PubMed Publication http://www.ncbi.nlm.nih.gov/pubmed/21135173

Founded in 1912 as the children's hospital of the Johns Hopkins Medical Institutions, the Johns Hopkins Children's Center offers one of the most comprehensive pediatric medical programs in the country, with more than 92,000 patient visits and nearly 9,000 admissions each year. Hopkins Children's is consistently ranked among the top children's hospitals in the nation. Hopkins Children's is Maryland's largest children's hospital and the only state-designated Trauma Service and Burn Unit for pediatric patients. It has recognized Centers of Excellence in dozens of pediatric subspecialties, including allergy, cardiology, cystic fibrosis, gastroenterology, nephrology, neurology, neurosurgery, oncology, pulmonary, and transplant. For more information, visit www.hopkinschildrens.org

Ekaterina Pesheva | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>