Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein interplay in muscle tied to life span

15.11.2013
Brown University biologists have uncovered a complicated chain of molecular events that leads from insulin to protein degradation in muscles and significantly diminished life span in fruit flies.

The new study in PLoS Genetics, which may have broad implications across species, identifies the fly version the mammalian protein activin as the central culprit in the process.


Messy muscle
More protein aggregates, shown as green specks, built up over 1, 3, and 5 weeks (left to right) in the muscle fibers of control flies (top row) compared to those in which dawdle, which hinders their cleanup, was suppressed (bottom row). Credit: Tatar lab/Brown University

Fruit flies are notoriously short-lived but scientists interested in the biology of aging in all animals have begun to understand why some fruit flies live longer than others. They have documented a direct association between insulin and life span, for example, and have observed a tradeoff between prolific reproduction and longevity. A new study, which may have broad implications across species, ties those findings more closely together by tracing an insulin signaling cascade through to protein quality control in muscle tissue and shortened life span.

The central feature of the study published in the November 2013 issue of PLoS Genetics is the newly discovered role of the fruit fly equivalent of the mammalian protein complex activin. They found that it blocks the natural mechanism in muscle cells for cleaning out misfolded proteins, leading to a decline in muscle performance. In what scientists at Brown University think is no coincidence, blocking the activity of that activin equivalent, called dawdle, can lengthen a fly’s life span by as much as 20 percent, about 10 days.

What excites the researchers is not that they can allow flies to stick around another week or two, but that the same fundamental proteins they have implicated in flies are “conserved” in evolution, meaning they also operate in mammals including humans.

“The ultimate goal of our research is to understand how certain molecular signaling pathways control aging across all species in general,” said study lead author Hua Bai, a postdoctoral researcher in the ecology and evolutionary biology lab of Marc Tatar, professor of biology at Brown. “For now this research is in fruit flies, but we think it can be extended to human aging biology. This signaling is quite conserved evolutionarily.”

From insulin to muscle

Bai, Tatar, and their co-authors began the study armed with the understanding that a reduction in insulin signaling lengthens fly life span because when there is less insulin there is more of a protein called dFOXO. Job one was to find out what genes relevant to life span dFOXO might be targeting.

Bai narrowed his search from hundreds of genes down to just three. He used interference RNA to suppress them and found that doing so increased life span in the flies. Suppressing dawdle (the fly version of activin) increased life span by 12 to 35 percent.

In flies, dawdle had been shown to affect neural development. In humans, one use for activin is that the brain employs it to stimulate ovarian follicles in the menstrual cycle of the female reproductive system.

But when the team went searching for where in the flies dawdle mattered to life span, their experiments showed that it was in muscle.

What was it doing there? Their experiments revealed that dawdle suppresses the activity of a gene called Atg8a, whose job is to spur the process of “autophagy” — the cleanup of misfolded proteins. A buildup of those misfolded proteins weakens muscle tissue, much like a buildup of misfolded proteins in brain cells is believed to cause Alzheimer’s disease. When researchers suppressed dawdle, more misfolded proteins were cleared from muscle fibers.

The researchers also found that overexpressing Atg8a in the muscle of flies lengthened life span somewhat.

In addition, the team found a potential linkage to other tissues when they discovered that suppressing dawdle also reduced insulin secretion from the insulin producing cells (IPCs) in the brains of the flies. This eventually led to a reduction in systemic insulin signaling. This completed a feedback loop in which reduced insulin signaling allows more dFOXO to suppress dawdle, in turn leading to further suppression of insulin secretion from the brain. That same process also allowed for better muscle maintenance by promoting expression of Atg8a.

Not dawdling in the lab

Bai acknowledged that the team doesn’t yet know why degraded muscle performance due to a lack of autophagy should result in reduced life span. One possibility could be that aging flies simply lose the mobility needed to compete for food. But the group has embarked on a new study of the most important muscle tissue: the heart. They are conducting experiments to examine whether the chain of events preventing autophagy affects the fruit flies’ heart pumping. In 2004 Tatar and his collaborator Rolf Bodmer connected insulin and dFOXO to fly heart performance.

Eager to see how this extends to people, the team is also looking at activin signaling and autophagy in mammalian cell cultures, Bai said.

“That’s potentially translational toward human biology,” Bai said. “If we have evidence from mammals, it could be useful for future therapeutic targets and drug design.”

In addition to Bai and Tatar, the paper’s other authors are Ping Kang and Ana Maria Hernandez.

The National Institute on Aging (grants: RO1AG024360 and R01AG031152) and the Ellison Medical Foundation funded the study.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>