Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein Identified That Serves as a Switch in a Key Pathway of Programmed Cell Death

Protein identified that serves as a switch in a key pathway of programmed cell death

Work led by St. Jude Children’s Research Hospital investigators provides fresh insight into mechanisms controlling programmed cell death pathways and offers new targets in the fight against cancer and virus-infected cells

Work led by St. Jude Children’s Research Hospital scientists identified how cells flip a switch between cell survival and cell death that involves a protein called FLIP.

The findings solve a riddle that has puzzled scientists for more than a decade regarding the dual nature of caspase-8, an enzyme intimately linked to the cell’s suicide pathway but also essential for cell survival during embryonic development and the immune response. Researchers identified FLIP and the silencing of another enzyme, named RIPK3, as playing pivotal roles. The study was published in the March 2 advance online edition of Nature.

Douglas Green, Ph.D., the paper’s senior author and chair of the St. Jude Department of Immunology, said work is already underway to use the findings to generate new cancer treatment targets and fresh insight into the missteps that give rise to certain tumors as well as evidence of how some virus-infected cells escape the pathways designed to dispatch such threats.

“It is a pretty rare thing to ‘cure’ a lethal mutation in an animal by removing another gene. When that happens, the biology shouts out to us that this is important. We just have to listen,” Green said.

FLIP’s role was identified after investigators bred mice that lacked genes for both caspase-8 and RIPK3. Previous research identified RIPK3 as responsible for orchestrating cell death via programmed necrosis. Once viewed as an uncontrolled form of cell death, programmed necrosis is now recognized as a distinct form of cell suicide. The body relies on both programmed necrosis and apoptosis, the more common process, to rid itself of damaged, dangerous or unneeded cells.

While loss of caspase-8 was known to be lethal during embryonic development, in this study investigators showed mice that lacked both caspase-8 and RIPK3 were born at normal rates and appeared developmentally normal early in life.

Investigators went on to show that caspase-8 prevents programmed necrosis by combining with FLIP to form an enzyme complex that disrupts RIPK3 functioning and so prevents death via programmed necrosis. The work also demonstrated that FLIP expression prevents caspase-8 from triggering cell death via apoptosis, although the exact mechanism must still be determined. Apoptosis relies on caspase enzymes and other molecules to ensure the cell self destructs.

Green said the findings provide insight into the mechanisms at work in neuroblastoma and other tumors that suffer a loss of caspase-8. “We are beginning collaborative experiments to examine these tumors to see if RIPK3 is deleted or blocked,” he said. Neuroblastoma arises in cells of the sympathetic nervous system. It is the most common solid tumor in children, accounting for up to 10 percent of all childhood cancers.

Andrew Oberst, a St. Jude postdoctoral fellow, is the study’s first author. The other authors are Christopher Dillon, Ricardo Weinlich, Laura McCormick and Patrick Fitzgerald, all of St. Jude; Cristina Pop and Guy Salvesen, of Sanford-Burnham Medical Research Institute, La Jolla; and Razq Hakem, of the University of Toronto.

The research was supported in part by the National Institutes of Health, the Canadian Institutes of Health Research, the Sass Foundation for Medical Research and ALSAC.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital is internationally recognized for its pioneering research and treatment of children with cancer and other catastrophic diseases. Ranked the No. 1 pediatric cancer hospital by Parents magazine and the No. 1 children’s cancer hospital by U.S. News & World Report, St. Jude is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children. St. Jude has treated children from all 50 states and from around the world, serving as a trusted resource for physicians and researchers. St. Jude has developed research protocols that helped push overall survival rates for childhood cancer from less than 20 percent when the hospital opened to almost 80 percent today. St. Jude is the national coordinating center for the Pediatric Brain Tumor Consortium and the Childhood Cancer Survivor Study. In addition to pediatric cancer research, St. Jude is also a leader in sickle cell disease research and is a globally prominent research center for influenza.

Founded in 1962 by the late entertainer Danny Thomas, St. Jude freely shares its discoveries with scientific and medical communities around the world, publishing more research articles than any other pediatric cancer research center in the United States. St. Jude treats more than 5,700 patients each year and is the only pediatric cancer research center where families never pay for treatment not covered by insurance. St. Jude is financially supported by thousands of individual donors, organizations and corporations without which the hospital’s work would not be possible. For more information, go to

St. Jude Public Relations Contacts:
Summer Freeman
(desk) 901-595-3061
(cell) 901-297-9861
Carrie Strehlau
(desk) 901-595-2295
(cell) 901-297-9875

Summer Freeman | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

nachricht Activation of 2 genes linked to development of atherosclerosis
28.10.2016 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>