Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein identified that can result in fragile bones

28.07.2010
Too little of a protein called neogenin results in a smaller skeleton during development and sets the stage for a more fragile bone framework lifelong, Medical College of Georgia researchers report.

A developing mouse with neogenin deficits has poorly defined digits and is generally smaller, including having small growth plates, an indicator of future development, said Dr. Wen-Cheng Xiong, developmental neurobiologist in the MCG Schools of Medicine and Graduate Studies and corresponding author of the study published in Developmental Cell. Dr. Zheng Zhou, MCG assistant research scientist, is first author.

Their findings provide new insight into skeletal development as they point toward a potential new direction for treating osteoarthritis, a common, painful and debilitating condition where cartilage between bones is lost, Xiong said.

Neogenin doesn't make bone; rather, it forms a protein complex essential to turning on cartilage-producing genes, the researchers found. "Each cell type has a master gene. Neogenin is not that, it's more of a modulator," Xiong said. That's why, if it's mutated, like in the mouse, cartilage and bone formation is disrupted – not halted. It's also why neogenin could be a good therapeutic target for turning the tide on cartilage or bone loss that occurs in osteoarthritis, Xiong said.

Skeletal development occurs early, which is why pregnant women need so much calcium. Initially the skeleton consists of soft bone or cartilage, which attracts blood vessels as well as the osteoblasts that replace most cartilage with hard bone over time. After birth, growth plates, where hard and soft bone meet, enable bones to lengthen and children to grow. After puberty, growth plates go away and bone hardens except for cartilage at the joints that eases movement and provides cushion. While bone cells continue to turn over, bone growth and loss should balance each other out after puberty due to osteoclasts – cells that break down and resorb bone. Diseases such as osteoporosis and osteoarthritis occur when osteoclasts start winning. Nutrition, inflammation and hormones are among the many factors that impact bone's status.

Neogenin, which Xiong has shown helps direct neurons during brain development and aid in regulation of iron levels, is found throughout bone and cartilage and numerous other tissues. Its pervasiveness reflects its many functions, depending on the stage of life and location, she noted.

Xiong suspects the protein has multiple roles in adulthood as well, albeit slightly different ones. In adulthood, neogenin may become more of an overseer, keeping tabs on functions it influences, such as bone formation. It resumes an instigator role when something goes amiss.

"Every function in the body needs to be able to go up or down," Xiong said, noting that neogenin pathways are likely altered in disease. "I think in the disease condition this molecule could be changed. The pathways are altered, not eliminated, rather increased or decreased abnormally."

Treating problems such as osteoporosis, iron overload and anemia, would require drugs that could keep protein levels high. Meanwhile, she wants to confirm neogenin's influence on cartilage function in adulthood. "In late-stage arthritis, the cartilage function may be completely disrupted but early in the disease process, maybe there is a window for stimulating this protein."

The research, funded by the National Institutes of Health, is also featured in a preview in Developmental Cell titled, "A Skeleton in the Closet: Neogenin Guides Bone Development."

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>