Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein identified that can result in fragile bones

28.07.2010
Too little of a protein called neogenin results in a smaller skeleton during development and sets the stage for a more fragile bone framework lifelong, Medical College of Georgia researchers report.

A developing mouse with neogenin deficits has poorly defined digits and is generally smaller, including having small growth plates, an indicator of future development, said Dr. Wen-Cheng Xiong, developmental neurobiologist in the MCG Schools of Medicine and Graduate Studies and corresponding author of the study published in Developmental Cell. Dr. Zheng Zhou, MCG assistant research scientist, is first author.

Their findings provide new insight into skeletal development as they point toward a potential new direction for treating osteoarthritis, a common, painful and debilitating condition where cartilage between bones is lost, Xiong said.

Neogenin doesn't make bone; rather, it forms a protein complex essential to turning on cartilage-producing genes, the researchers found. "Each cell type has a master gene. Neogenin is not that, it's more of a modulator," Xiong said. That's why, if it's mutated, like in the mouse, cartilage and bone formation is disrupted – not halted. It's also why neogenin could be a good therapeutic target for turning the tide on cartilage or bone loss that occurs in osteoarthritis, Xiong said.

Skeletal development occurs early, which is why pregnant women need so much calcium. Initially the skeleton consists of soft bone or cartilage, which attracts blood vessels as well as the osteoblasts that replace most cartilage with hard bone over time. After birth, growth plates, where hard and soft bone meet, enable bones to lengthen and children to grow. After puberty, growth plates go away and bone hardens except for cartilage at the joints that eases movement and provides cushion. While bone cells continue to turn over, bone growth and loss should balance each other out after puberty due to osteoclasts – cells that break down and resorb bone. Diseases such as osteoporosis and osteoarthritis occur when osteoclasts start winning. Nutrition, inflammation and hormones are among the many factors that impact bone's status.

Neogenin, which Xiong has shown helps direct neurons during brain development and aid in regulation of iron levels, is found throughout bone and cartilage and numerous other tissues. Its pervasiveness reflects its many functions, depending on the stage of life and location, she noted.

Xiong suspects the protein has multiple roles in adulthood as well, albeit slightly different ones. In adulthood, neogenin may become more of an overseer, keeping tabs on functions it influences, such as bone formation. It resumes an instigator role when something goes amiss.

"Every function in the body needs to be able to go up or down," Xiong said, noting that neogenin pathways are likely altered in disease. "I think in the disease condition this molecule could be changed. The pathways are altered, not eliminated, rather increased or decreased abnormally."

Treating problems such as osteoporosis, iron overload and anemia, would require drugs that could keep protein levels high. Meanwhile, she wants to confirm neogenin's influence on cartilage function in adulthood. "In late-stage arthritis, the cartilage function may be completely disrupted but early in the disease process, maybe there is a window for stimulating this protein."

The research, funded by the National Institutes of Health, is also featured in a preview in Developmental Cell titled, "A Skeleton in the Closet: Neogenin Guides Bone Development."

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>