Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Identified that Plays Role in Blood Flow

22.09.2008
MU researchers use microscopic technology to get closer to understanding vascular diseases

For years, researchers have known that high blood pressure causes blood vessels to contract and low blood pressure causes blood vessels to relax. Until recently, however, researchers did not have the tools to determine the exact proteins responsible for this phenomenon.

Now, using atomic force microscopy - a microscope with very high resolution - and isolating blood vessels outside the body, University of Missouri researchers have identified a protein that plays an important role in the control of tissue blood flow and vascular resistance. This new knowledge brings researchers one step closer to understanding vascular diseases, such as high blood pressure, diabetes and other vascular problems.

“This study provides new insights that clarify the role of specific proteins and the vascular smooth muscle cells that control the mechanical activity of blood vessels,” said Gerald Meininger, professor and director of MU’s Dalton Cardiovascular Research Center. “We have identified an important receptor that is responsible for the ability of small arteries in the body. This research provides new clues for the cause of vascular diseases, such as high blood pressure and diabetes and may be used in the future as a possible therapeutic target.”

The researchers isolated blood vessels from the body and used atomic force microscopy to apply a controlled force to particular proteins located on the surface of smooth muscle cells from the blood vessel wall. When force was applied to the proteins, the smooth muscle cells reacted, and constricted or contracted depending on the proteins that were targeted. Testing several proteins, researchers were able to pinpoint which proteins played a role in the mechanics of blood vessels.

In 90 to 95 percent of high blood pressure cases the cause is unknown, according to the American Heart Association. Understanding the role of these proteins in controlling blood vessel function will eventually lead researchers to better answers for treating and preventing vascular disease, Meininger said.

The study “Extracellular matrix-specific focal adhesions in vascular smooth muscle produce mechanically active adhesion sties,” was published in the American Journal of Physiology Cell Physiology. It was co-authored by Meininger; Zhe Sun, assistant research professor in the Dalton Cardiovascular Research Center; Luis Martinez-Lemus, assistant professor in the MU School of Medicine and investigator in the center; and Michael Hill, professor in the school and investigator in the center.

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>