Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Identified that Plays Role in Blood Flow

22.09.2008
MU researchers use microscopic technology to get closer to understanding vascular diseases

For years, researchers have known that high blood pressure causes blood vessels to contract and low blood pressure causes blood vessels to relax. Until recently, however, researchers did not have the tools to determine the exact proteins responsible for this phenomenon.

Now, using atomic force microscopy - a microscope with very high resolution - and isolating blood vessels outside the body, University of Missouri researchers have identified a protein that plays an important role in the control of tissue blood flow and vascular resistance. This new knowledge brings researchers one step closer to understanding vascular diseases, such as high blood pressure, diabetes and other vascular problems.

“This study provides new insights that clarify the role of specific proteins and the vascular smooth muscle cells that control the mechanical activity of blood vessels,” said Gerald Meininger, professor and director of MU’s Dalton Cardiovascular Research Center. “We have identified an important receptor that is responsible for the ability of small arteries in the body. This research provides new clues for the cause of vascular diseases, such as high blood pressure and diabetes and may be used in the future as a possible therapeutic target.”

The researchers isolated blood vessels from the body and used atomic force microscopy to apply a controlled force to particular proteins located on the surface of smooth muscle cells from the blood vessel wall. When force was applied to the proteins, the smooth muscle cells reacted, and constricted or contracted depending on the proteins that were targeted. Testing several proteins, researchers were able to pinpoint which proteins played a role in the mechanics of blood vessels.

In 90 to 95 percent of high blood pressure cases the cause is unknown, according to the American Heart Association. Understanding the role of these proteins in controlling blood vessel function will eventually lead researchers to better answers for treating and preventing vascular disease, Meininger said.

The study “Extracellular matrix-specific focal adhesions in vascular smooth muscle produce mechanically active adhesion sties,” was published in the American Journal of Physiology Cell Physiology. It was co-authored by Meininger; Zhe Sun, assistant research professor in the Dalton Cardiovascular Research Center; Luis Martinez-Lemus, assistant professor in the MU School of Medicine and investigator in the center; and Michael Hill, professor in the school and investigator in the center.

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>