Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein identified as enemy of vital tumor suppressor PTEN

UT MD Anderson-led team finds evidence that WWP2 subverts a brake on cell growth

A protein known as WWP2 appears to play a key role in tumor survival, a research team headed by a scientist at The University of Texas MD Anderson Cancer Center reports in an advance online publication of Nature Cell Biology.

Their research suggests that the little-studied protein binds to the tumor-suppressing protein PTEN (phosphatase and tensin homologue deleted on chromosome 10), marking it for destruction by proteasomes, which degrade proteins and recycle their components.

PTEN plays a role regulating the cellular reproduction cycle and prevents rapid cell growth, a hallmark of malignant cells. Its gene is mutated or deleted in many types of cancer, the researchers noted.

The WWP2 (atrophin-1 interacting protein 2) protein was discovered in the laboratory of Junjie Chen, Ph.D., professor and chair in MD Anderson's Department of Experimental Radiation Oncology and senior author of the paper.

"We were trying to find regulators of PTEN when we isolated the protein WWP2 as a putative PTEN-associated protein," Chen said. He noted that WWP2 caught the researchers' attention because it is similar to the NEDD4-1 protein, which has been proposed as a regulator of PTEN function.

First suspect doesn't affect PTEN

WWP2 is an E3 ubiquitin ligase in the NEDD4-like protein family. Ubiquitins attach to other proteins, labeling them for degradation by proteasomes. NEDD4-like proteins play important roles regulating gene transcription, embryonic stem cells, cellular transport and activation of T cells.

"But when NEDD4-1 is deleted in mice, researchers have not seen a clear change in PTEN protein level," Chen noted. "These findings suggest that there may be other PTEN regulators.

"Because WWP2 is part of the NEDD4-like family, we decided to take a look at it to see if it's the real regulator of PTEN," Chen continued. "When you knock down WWP2, you see an increase in PTEN level, whereas with WWP2 overexpression you can see a decrease in PTEN. This finding indicates that WWP2 may be involved in PTEN's regulation."

Overall, the study results suggest that WWP2 can regulate PTEN stability, Chen said.

Possibly a cancer-driving gene

The team uncovered evidence that WWP2 is a potential oncogene - a driver in tumor formation and growth. In one experiment, mice with normal WWP2 developed prostate cancer tumors after nine weeks that were more than three times the size of tumors in mice with WWP2 silenced.

Chen noted that more research is needed to determine whether WWP2 is functionally important in tumors or in tumor formation. "We need to look at real tumor samples to determine whether tumors with reduced PTEN expression could result from the overexpression of WWP2."

He added that some early studies suggest that WWP2 may operate in tumors, but a correlation between WWP2 overexpression and PTEN downregulation in tumors has not been established.

This work was supported in part by a grant from the Department of Biotechnology, Ministry of Science and Technology, India, a U.S. Department of Defense Era of Hope Research Scholar Award, an NIH Specialized Program of Research Excellence award to Mayo Clinic, and a National Cancer Institute grant to MD Anderson. Also, fellowship support came from the Department of Biotechnology, Council of Scientific and Industrial Research and University Grants Commission, India, and support from the Institute of Life Sciences, Hyderabad, India.

Co-authors with Chen are first author Subbareddy Maddika, Ph.D, Sridhar Kavela, Neelam Rani, and Vivek Reddy Palicharla, all of the Laboratory of Cell Death and Cell Survival, Centre for DNA Fingerprinting and Diagnostics in Nampally, Hyderabad, India; Jenny Pokorny and Jann Sarkaria, M.D., of the Mayo Clinic, Rochester, Minn.

About MD Anderson

The University of Texas MD Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. MD Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For seven of the past nine years, MD Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Microbe hunters discover long-sought-after iron-munching microbe
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.
24.10.2016 | Max-Planck-Institut für Hirnforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>