Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein identified as enemy of vital tumor suppressor PTEN

04.05.2011
UT MD Anderson-led team finds evidence that WWP2 subverts a brake on cell growth

A protein known as WWP2 appears to play a key role in tumor survival, a research team headed by a scientist at The University of Texas MD Anderson Cancer Center reports in an advance online publication of Nature Cell Biology.

Their research suggests that the little-studied protein binds to the tumor-suppressing protein PTEN (phosphatase and tensin homologue deleted on chromosome 10), marking it for destruction by proteasomes, which degrade proteins and recycle their components.

PTEN plays a role regulating the cellular reproduction cycle and prevents rapid cell growth, a hallmark of malignant cells. Its gene is mutated or deleted in many types of cancer, the researchers noted.

The WWP2 (atrophin-1 interacting protein 2) protein was discovered in the laboratory of Junjie Chen, Ph.D., professor and chair in MD Anderson's Department of Experimental Radiation Oncology and senior author of the paper.

"We were trying to find regulators of PTEN when we isolated the protein WWP2 as a putative PTEN-associated protein," Chen said. He noted that WWP2 caught the researchers' attention because it is similar to the NEDD4-1 protein, which has been proposed as a regulator of PTEN function.

First suspect doesn't affect PTEN

WWP2 is an E3 ubiquitin ligase in the NEDD4-like protein family. Ubiquitins attach to other proteins, labeling them for degradation by proteasomes. NEDD4-like proteins play important roles regulating gene transcription, embryonic stem cells, cellular transport and activation of T cells.

"But when NEDD4-1 is deleted in mice, researchers have not seen a clear change in PTEN protein level," Chen noted. "These findings suggest that there may be other PTEN regulators.

"Because WWP2 is part of the NEDD4-like family, we decided to take a look at it to see if it's the real regulator of PTEN," Chen continued. "When you knock down WWP2, you see an increase in PTEN level, whereas with WWP2 overexpression you can see a decrease in PTEN. This finding indicates that WWP2 may be involved in PTEN's regulation."

Overall, the study results suggest that WWP2 can regulate PTEN stability, Chen said.

Possibly a cancer-driving gene

The team uncovered evidence that WWP2 is a potential oncogene - a driver in tumor formation and growth. In one experiment, mice with normal WWP2 developed prostate cancer tumors after nine weeks that were more than three times the size of tumors in mice with WWP2 silenced.

Chen noted that more research is needed to determine whether WWP2 is functionally important in tumors or in tumor formation. "We need to look at real tumor samples to determine whether tumors with reduced PTEN expression could result from the overexpression of WWP2."

He added that some early studies suggest that WWP2 may operate in tumors, but a correlation between WWP2 overexpression and PTEN downregulation in tumors has not been established.

This work was supported in part by a grant from the Department of Biotechnology, Ministry of Science and Technology, India, a U.S. Department of Defense Era of Hope Research Scholar Award, an NIH Specialized Program of Research Excellence award to Mayo Clinic, and a National Cancer Institute grant to MD Anderson. Also, fellowship support came from the Department of Biotechnology, Council of Scientific and Industrial Research and University Grants Commission, India, and support from the Institute of Life Sciences, Hyderabad, India.

Co-authors with Chen are first author Subbareddy Maddika, Ph.D, Sridhar Kavela, Neelam Rani, and Vivek Reddy Palicharla, all of the Laboratory of Cell Death and Cell Survival, Centre for DNA Fingerprinting and Diagnostics in Nampally, Hyderabad, India; Jenny Pokorny and Jann Sarkaria, M.D., of the Mayo Clinic, Rochester, Minn.

About MD Anderson

The University of Texas MD Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. MD Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For seven of the past nine years, MD Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>