Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein found to regulate red blood cell size and number

29.08.2012
The adult human circulatory system contains between 20 and 30 trillion red blood cells (RBCs), the precise size and number of which can vary from person to person.

Some people may have fewer, but larger RBCs, while others may have a larger number of smaller RBCs. Although these differences in size and number may seem inconsequential, they raise an important question: Just what controls these characteristics of RBCs?

This question is particularly relevant for the roughly one-quarter of the population that suffers from anemia, which is often caused by flawed RBC production. A better understanding of how RBC production is controlled may offer greater insight into the development and potential treatment of anemia.

By analyzing the results of genome-wide association studies (GWAS) in conjunction with experiments on mouse and human red blood cells, researchers in the lab of Whitehead Institute Founding Member Harvey Lodish have identified the protein cyclin D3 as regulating the number of cell divisions RBC progenitors undergo, which ultimately affects the resulting size and quantity of RBCs. Their findings are reported in the September 14 issue of Genes and Development.

"This is one of the rare cases where we can explain a normal human-to-human variation," says Lodish, who is also a professor of biology and bioengineering at MIT. "In a sense, it's a window on human evolution. Why this should have happened, we have no idea, but it does."

Lodish likens cyclin D3's role in RBCs to that of a clock. In some people, the clock triggers RBC progenitors to mature after four rounds of cell division, resulting in fewer but larger RBCs. In others it goes off after five cell division cycles, which leads to production of a greater number of smaller RBCs. In both cases, the blood usually has the same ability to carry oxygen to distant tissues.

The initial hint of cyclin D3's importance came from GWAS, genetic surveys of large numbers of people with or without a particular trait. Researchers compare the groups in an attempt to identify genetic variations.

"The problem with most GWAS is that you get a bunch of potentially interesting genes, but that doesn't tell you anything about the functional biology, so you really have to figure it out," says Leif Ludwig, a Lodish graduate student and co-author of the Genes and Development paper. "You only know something has a role, but you don't know how it can cause variation. This work on cyclin D3 is a really nice example of how functional follow-up on a GWAS association can really teach us something about underlying biology."

In the case of RBC size and number, a mutation affecting cyclin D3 production bubbled to the surface from the GWAS's murky genetic data. Ludwig and co-author Vijay Sankaran then confirmed that reduced or inhibited cyclin D3 expression in mice and in human RBC progenitors caused those cells to halt cell division and mature earlier, producing larger and fewer red blood cells than mice and cells with uninhibited cyclin D3 production.

As one of only a handful of studies that have successfully used GWAS to produce definitive biological results, Sankaran is excited that this work confirms the value of such genetic studies.

"Can genetics teach us about biology?" asks Sankaran, also a postdoctoral researcher in the Lodish lab. "Yes! This work tells us that as genetic studies identify new genes, there will probably have been a lot of things biologists may have ignored. Genetics allows you to shine a spotlight on something interesting and then home in on it see what can be learned."

This work was supported by the National Institutes of Health (NIH), Boehringer Ingelheim Fonds, and Amgen, Inc.

Written by Nicole Giese Rura

Harvey Lodish's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology and a professor of bioengineering at Massachusetts Institute of Technology.

Full Citation:

"Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number"

Genes and Development, XXXXXX XX, 2012.

Vijay G. Sankaran (1,2,3,8,†), Leif S. Ludwig (2,14,†), Ewa Sicinska (5,*), Jian Xu (4,6,*), Daniel E. Bauer (4,6,*), Jennifer C. Eng (1,2), Heide Christine Patterson (2,12), Ryan A. Metcalf (13), Yasodha Natkunam (13), Stuart H. Orkin (1,4,6,8), Piotr Sicinski (7,9), Eric S. Lander (1,10,11,ǂ), and Harvey F. Lodish (1,2,11,ǂ)

1. Broad Institute, Cambridge, Massachusetts, USA.

2. Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA.

3. Department of Medicine Children's Hospital Boston, Boston, Massachusetts, USA.

4. Division of Hematology/Oncology, Children's Hospital Boston, Boston, Massachusetts, USA.

5. Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.

6. Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.

7. Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.

8. Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.

9. Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.
10. Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.

11. Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

12. Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.

13. Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.

14. Institute for Chemistry and Biochemistry, Freie Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany.

†These authors contributed equally to this work.

*These authors contributed equally to this work.

ǂThese authors jointly directed this work.

Nicole Rura | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>