Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein “filmed” while unfolding at atomic resolution

11.02.2013
When proteins get “out of shape”, the consequences can be fatal. They lose their function and in some cases form insoluble, toxic clumps that damage other cells and can cause severe diseases such as Alzheimer’s or Parkinson’s.

Researchers at the Max Planck Institute for Biophysical Chemistry and the German Center for Neurodegenerative Diseases in Göttingen – in collaboration with Polish colleagues – have now “filmed” how a protein gradually unfolds for the first time.


“Snapshot” of the unfolding of the CylR2 protein from Enterococcus faecalis. If the protein is cooled from 25°C to -16°C, it successively breaks down into its two identical subunits. The latter are initially stable, but at -16°C they form an instable, dynamic protein form, which plays a key role in folding.

© Zweckstetter, Max Planck Institute for Biophysical Chemistry & German Center for Neurodegenerative Diseases

By combining low temperatures and NMR spectroscopy, the scientists visualized seven intermediate forms of the CylR2 protein while cooling it down from 25°C to - 16°C. Their results show that the most instable intermediate form plays a key role in protein folding. The scientists’ findings may contribute to a better understanding of how proteins adopt their structure and misfold during illness. (Nature Chemical Biology, 10. February 2013)

Whether Alzheimer’s, Parkinson’s or Huntington’s Chorea – all three diseases have one thing in common: They are caused by misfolded proteins that form insoluble clumps in the brains of affected patients and, finally, destroy their nerve cells. One of the most important questions in the biological sciences and medicine is thus: How do proteins – the tools of living cells – achieve or lose their three-dimensional structure. Because only if their amino acid chains are correctly folded, can proteins perform their tasks properly.

But what exactly happens when proteins fold or unfold was previously nearly impossible to investigate. With heat and pressure, proteins easily lose their shape – and thus their function. However, such methods are not suitable for directly observing their unfolding process. The intermediate forms that occur in the course of protein folding are much too transient.

With a novel approach, researchers have now succeeded in “filming” the complex process of protein folding for the first time. Scientists at the Max Planck Institute for Biophysical Chemistry (MPIbpc) and the German Center for Neurodegenerative Diseases (DZNE) in Göttingen, together with their colleagues at the Polish Academy of Sciences in Warsaw and at the University of Warsaw, have rendered visible – at atomic resolution – how a protein progressively “loses its shape”.
In doing so, the researchers had pinned their hopes on low temperatures. “If a protein is slowly cooled down, its intermediate forms accumulate in larger quantities than in commonly used denaturation methods, such as heat, pressure, or urea. We hoped that these quantities would be sufficient to examine the intermediate forms with nuclear magnetic resonance (NMR) spectroscopy,” said Markus Zweckstetter, head of the research groups “Protein Structure Determination using MNR” at the MPIbpc and “Structural Biology in Dementia” at the DZNE in Göttingen.

How a protein loses its shape

As research object, Zweckstetter’s team chose a key protein for toxin production in Enterococcus faecalis, a pathogen frequently encountered in hospitals where it particularly jeopardizes patients with a weak immune system. But that is not the only reason why the so-called CylR2 protein is interesting. Some time ago, researchers working with Stefan Becker at the MPIbpc succeeded in elucidating its structure, which shows: Its three-dimensional shape makes CylR2 a particular promising candidate for the scientists’ approach. “ClyR2 is a relatively small protein composed of two identical subunits. This gave us a great chance to be able to visualize the individual stages of its unfolding process in the test tube," explained the chemists Mariusz and Lukasz Jaremko.

Stefan Becker's group undertook the first step: to prepare a sufficient quantity of the protein in the laboratory. Subsequently, the two chemists cooled the protein successively from 25°C to -16°C and examined its intermediate forms with NMR spectroscopy. They achieved what they had hoped for: Their “film clip” shows at atomic resolution how the protein gradually unfolds. The structural biologist Markus Zweckstetter describes exactly what happens in this process: “We clearly see how the CylR2 protein ultimately splits into its two subunits. The individual subunit is initially relatively stable. With further cooling, the protein continues to unfold and at -16 °C it is extremely instable and dynamic. This instable protein form provides the seed for folding and can also be the “trigger” for misfolding.” The scientist’s findings may help to gain deeper insights into how proteins assume their spatial structure and why intermediate forms of certain proteins misfold in the event of illness. (cr)

Original Publication
Mariusz Jaremko, Lukasz Jaremko, Hai-Young Kim, Min-Kyu Cho, Charles D. Schwieters, Karin Giller, Stefan Becker, Markus Zweckstetter
Cold-denaturation of a protein dimer monitored at atomic resolution.
Nature Chemical Biology, DOI:10.1038/NChemBio.1181 (2013)
Contact

Prof. Dr. Markus Zweckstetter
Protein Structure Determination using NMR
Phone:+49 551 201-2220
Email: mzwecks@​gwdg.de
Dr. Carmen Rotte
Press Officer, Public Relations Office
Phone:+49 551 201-1304Fax:+49 551 201-1151
Email: carmen.rotte@​mpibpc.mpg.de
Dr. Dirk Förger
Head of Press and Public Relations, German Center for Neurodegenerative Diseases Bonn
Phone:+49 228 43302-260
Email: dirk.foerger@​dzne.de

Dr. Dirk Förger | Max-Planck-Institute
Further information:
http://www.mpibpc.mpg.de/9606319/pr_1302

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>