Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein discovery could switch off cardiovascular disease

12.03.2012
Scientists discover protein and move a step closer to preventing cardiovascular disease

Researchers from Queen Mary, University of London and the University of Surrey have found a protein inside blood vessels with an ability to protect the body from substances which cause cardiovascular disease.

The findings, published online in the journal Cardiovascular Research, have revealed the protein protein pregnane X receptor (PXR) can switch on different protective pathways in the blood vessels.

Co-author Dr David Bishop-Bailey, based at Queen Mary's William Harvey Research Institute, said they found the protein was able to sense a wide variety of drugs, foreign chemicals and food products in the blood and switch on specific pathways to deal with them.

"We've known for a long time that this protein has an important role sorting out waste products in the liver - now we believe it could have an important role in protecting the body against cardiovascular disease," he said.

Dr Karen Swales, based at the University of Surrey, said: "Heart and circulatory disease is the UK's biggest killer. Discovering that the protein pregnane X receptor (PXR) could protect blood vessels has major implications for the prevention of cardiovascular disease."

"We knew if PXR played similar protective roles in blood vessels to those in the liver, it could protect the vessels from damage caused by harmful substances in the blood."

The researchers used human tissue and blood vessel cells in culture and found PXR was present and active.

Dr Bishop-Bailey added: "We introduced specific PXR activating drugs and saw a co-ordinated increase in metabolising and anti-oxidant enzyme pathways.

"Since blood travels everywhere in the body, PXR has the potential to provide protection not just through its actions in the liver, but anywhere in the entire body. If we can work out how to manipulate PXR to turn on detoxification and antioxidant pathways in blood vessels, we may be a step closer to preventing our nation's biggest killer."

Bridget Dempsey | EurekAlert!
Further information:
http://www.qmul.ac.uk

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>