Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein could put antibiotic-resistant bugs in handcuffs

10.06.2014

Ubiquitous protein controls copying of resistant DNA

Staph infections that become resistant to multiple antibiotics don't happen because the bacteria themselves adapt to the drugs, but because of a kind of genetic parasite they carry called a plasmid that helps its host survive the antibiotics.


An atomic force microscopy image shows a four-part complex of the protein RepA (bright mounds) bound together and "handcuffing" two thread-like strands of DNA plasmid.

Credit: University of Nebraska Medical Center Nanoimaging Core Facility

Plasmids are rings of bare DNA containing a handful of genes that are essentially freeloaders, borrowing most of what they need to live from their bacterial host. The plasmids copy themselves and go along for the ride when the bacteria divide to copy themselves.

A team from Duke and the University of Sydney in Australia has solved the structure of a key protein that drives DNA copying in the plasmids that make staphylococcus bacteria antibiotic-resistant. Knowing how this protein works may now help researchers devise new ways to stop the plasmids from spreading antibiotic resistance in staph by preventing the plasmids from copying themselves.

"If plasmids can't replicate, they go away," said lead author Maria Schumacher, an associate professor of biochemistry in the Duke University School of Medicine. "This is a fantastic new target for antibiotics."

The work appears the week of June 9 in the Proceedings of the National Academy of Sciences.

An essential part of biology, plasmids are so minimalistic they're not even considered alive by themselves. But they're good at ferrying genes from one kind of bacteria to another in a process called horizontal gene transfer. They also excel at adapting to environmental conditions more quickly than their bacterial hosts. Plasmids are able to develop new defenses to an antibiotic and then share that new trick with other bacteria.

Through several years of laborious structural biology to figure out the specific shapes of the molecules involved, the research team has mapped out the structure and function of a protein called RepA, which is crucial to the plasmids' ability to copy its DNA and make a new plasmid.

RepA is a protein that sticks to the beginning of the plasmid's DNA sequence and starts the copying process. "This protein is essential to everything," Schumacher said. "If you don't have it, the plasmid will quickly cease to exist."

Plasmids also need a mechanism to prevent themselves from making too many copies, which would strangle their bacterial host. The researchers have found that RepA is crucial to that function as well.

RepA naturally sticks together in pairs. When a pair of RepA proteins bumps into another pair, as when the cell is starting to get crowded with plasmids, the two pairs of RepA preferentially stick to each other. They form a complex back-to-back, with both having their DNA-grabbing parts facing outward.

When RepA forms this four-part molecule, the plasmids are said to be 'handcuffed,' because two rings of DNA are captured with the locked-up and non-functional RepA complex in the middle.

Once it is handcuffed like this, the plasmid will no longer replicate. Schumacher said this mechanism is apparently how RepA prevents the plasmids from overpopulating the bacterial cell.

Schumacher says RepA is ubiquitous in the plasmid world and doesn't bear much resemblance to other proteins, or to human proteins, making it an attractive drug target. She is hopeful the molecule could be a new site to attack with antibiotics.

"This has been a fun project because we saw many things we didn't expect to see," Schumacher said.

###

The research was supported by the National Institutes of Health and Department of Energy in the U.S., and the National Health and Medical Research Council of Australia.

CITATION: "Mechanism of staphylococcal multiresistance plasmid replication origin assembly by the RepA protein," Maria Schumacher, Nam K. Tonthat, Stephen M. Kwon, Nagababu Chinnam, Michael A. Liu, Ronald A. Skurray and Neville Firth. Proceedings of the National Academy of Sciences, June 9, 2014. DOI: 10.1073/pnas.1406065111

Karl Leif Bates | Eurek Alert!

Further reports about: DNA Health Protein antibiotics bacteria bacterial copying genes mechanism pair plasmids proteins replicate structure

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>