Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein complex key in avoiding DNA repair mistakes, cancer

Lymphoma, other cancers may occur when a delicate gene recombination process in B cells goes awry, U-M study in mice suggests

As the body creates antibodies to fight invaders, a three-protein DNA repair complex called MRN is crucial for a normal gene-shuffling process to proceed properly, University of Michigan research shows.

The discoveries in mice, published online this week in Nature Structural and Molecular Biology, advance understanding of the immune system and shed light on how B-cell lymphoma and some other cancers may begin.

U-M scientists found that:

* When one protein in the MRN complex, Mre11, is absent, mistakes occur in a risky DNA break-and-repair process that routinely occurs in immune system B cells. The process is known as immunoglobulin class switch recombination.

* Incorrectly repaired DNA can alter the normal action of B lymphocytes and their offspring, whose job is to make antibodies to combat and protect against specific disease-causing microbes and other foreign agents.

“Class switch recombination represents a double-edged sword, being necessary for immune system function, but known to cause cancer when mistakes are made. We now understand that Mre11 and the MRN complex as a whole lie in the middle of this delicate balance,” says David O. Ferguson, M.D., Ph.D., the study’s senior author and assistant professor of pathology at the U-M Medical School.


The MRN complex consists of three proteins, Mre11, Rad50 and Nbs1. The Ferguson study examined the role of Mre11.

The MRN complex is an emerging area of interest in medical science. MRN appears to be a key force in sensing and repairing DNA damage. In the DNA of cells throughout the body, damage known as double strand breaks occurs frequently, especially as people grow older. External causes such as exposure to toxic substances or ionizing radiation, or forces inside the body such as oxidative stress, can cause the breaks. Mistakes in the repair of breaks can lead to cancer.

The new study builds on an earlier study by Ferguson and his team published in Cell in October 2008, which showed that Mre11 both signals and repairs DNA damage.

Research details

The research team used complex mouse genetics to create mice with Mre11 mutations only in B lymphocytes. They then found that chromosomes were broken in Mre11-deficient B lymphocytes undergoing class switching. The breaks were located in the immunoglobulin locus, the site where class switch recombination occurs. This demonstrated that Mre11 is required for the actual repair of the intentional DNA damage, and implies a crucial role for Mre11 in preventing cancer.

“The link to cancer results from what is known to happen to DNA breaks at the immunoglobulin locus,” says Ferguson. “On rare occasions, these special DNA breaks can recombine with distant sites in the genome, and result in chromosome translocations that cause cancer.” For example, the immunoglobulin locus is found rearranged with oncogenes such as BCL2 or BCL6 in common human B-cell lymphomas.

Ferguson says it is possible that MRN deficiencies can lead to several types of lymphomas and leukemias, and may be involved in colon and breast cancer as well. Genetic variations related to the MRN complex also may be at the root of inherited immunodeficiency disorders, and to more mild symptoms of immunodeficiency that may affect greater numbers of people.

Ferguson is also a co-author of a related study of Mre11 published online this week in Nature. The two new studies together reveal that the same protein that assures normal B-cell function also plays a role in a type of gene damage associated with both cancer and aging.

The Nature Structural and Molecular Biology study shows that the body needs Mre11 action to properly repair double strand breaks in B cells, allowing the immune system to function correctly. But the Nature study reveals that Mre11’s repair action at the ends of chromosomes, called telomeres, can facilitate catastrophic chromosome fusing. Fused chromosomes are implicated in cancer and aging.

What’s next

In further research in mice, Ferguson and his team are now searching for specific evidence that double strand breaks get “misrepaired” in ways that lead to B-cell lymphoma. The research may eventually lead to human trials of new strategies in cancer diagnosis and treatment.

Additional authors: Maria Dinkelmann and Elizabeth Spehalski, co-first authors, U-M Department of Pathology; Trina Stoneham, Jeffrey Buis and Yipin Wu, U-M Department of Pathology; JoAnn M. Sekiguchi, U-M Departments of Internal Medicine and Human Genetics.

Funding: National Institutes of Health, Sidney Kimmel Cancer Research Foundation, University of Michigan Cancer Center. Ferguson recently was awarded funding for five years as a Leukemia & Lymphoma Society Scholar.

Citations: Nature Structural and Molecular Biology, doi: 10.1038/nsmb.1639; Nature, doi:10.1038/nature08196

Resources: U-M Cancer AnswerLine, 800-865-1125

Anne Rueter | UMHS News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>