Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein complex key in avoiding DNA repair mistakes, cancer

31.07.2009
Lymphoma, other cancers may occur when a delicate gene recombination process in B cells goes awry, U-M study in mice suggests

As the body creates antibodies to fight invaders, a three-protein DNA repair complex called MRN is crucial for a normal gene-shuffling process to proceed properly, University of Michigan research shows.

The discoveries in mice, published online this week in Nature Structural and Molecular Biology, advance understanding of the immune system and shed light on how B-cell lymphoma and some other cancers may begin.

U-M scientists found that:

* When one protein in the MRN complex, Mre11, is absent, mistakes occur in a risky DNA break-and-repair process that routinely occurs in immune system B cells. The process is known as immunoglobulin class switch recombination.

* Incorrectly repaired DNA can alter the normal action of B lymphocytes and their offspring, whose job is to make antibodies to combat and protect against specific disease-causing microbes and other foreign agents.

“Class switch recombination represents a double-edged sword, being necessary for immune system function, but known to cause cancer when mistakes are made. We now understand that Mre11 and the MRN complex as a whole lie in the middle of this delicate balance,” says David O. Ferguson, M.D., Ph.D., the study’s senior author and assistant professor of pathology at the U-M Medical School.

Context

The MRN complex consists of three proteins, Mre11, Rad50 and Nbs1. The Ferguson study examined the role of Mre11.

The MRN complex is an emerging area of interest in medical science. MRN appears to be a key force in sensing and repairing DNA damage. In the DNA of cells throughout the body, damage known as double strand breaks occurs frequently, especially as people grow older. External causes such as exposure to toxic substances or ionizing radiation, or forces inside the body such as oxidative stress, can cause the breaks. Mistakes in the repair of breaks can lead to cancer.

The new study builds on an earlier study by Ferguson and his team published in Cell in October 2008, which showed that Mre11 both signals and repairs DNA damage.

Research details

The research team used complex mouse genetics to create mice with Mre11 mutations only in B lymphocytes. They then found that chromosomes were broken in Mre11-deficient B lymphocytes undergoing class switching. The breaks were located in the immunoglobulin locus, the site where class switch recombination occurs. This demonstrated that Mre11 is required for the actual repair of the intentional DNA damage, and implies a crucial role for Mre11 in preventing cancer.

“The link to cancer results from what is known to happen to DNA breaks at the immunoglobulin locus,” says Ferguson. “On rare occasions, these special DNA breaks can recombine with distant sites in the genome, and result in chromosome translocations that cause cancer.” For example, the immunoglobulin locus is found rearranged with oncogenes such as BCL2 or BCL6 in common human B-cell lymphomas.

Ferguson says it is possible that MRN deficiencies can lead to several types of lymphomas and leukemias, and may be involved in colon and breast cancer as well. Genetic variations related to the MRN complex also may be at the root of inherited immunodeficiency disorders, and to more mild symptoms of immunodeficiency that may affect greater numbers of people.

Ferguson is also a co-author of a related study of Mre11 published online this week in Nature. The two new studies together reveal that the same protein that assures normal B-cell function also plays a role in a type of gene damage associated with both cancer and aging.

The Nature Structural and Molecular Biology study shows that the body needs Mre11 action to properly repair double strand breaks in B cells, allowing the immune system to function correctly. But the Nature study reveals that Mre11’s repair action at the ends of chromosomes, called telomeres, can facilitate catastrophic chromosome fusing. Fused chromosomes are implicated in cancer and aging.

What’s next

In further research in mice, Ferguson and his team are now searching for specific evidence that double strand breaks get “misrepaired” in ways that lead to B-cell lymphoma. The research may eventually lead to human trials of new strategies in cancer diagnosis and treatment.

Additional authors: Maria Dinkelmann and Elizabeth Spehalski, co-first authors, U-M Department of Pathology; Trina Stoneham, Jeffrey Buis and Yipin Wu, U-M Department of Pathology; JoAnn M. Sekiguchi, U-M Departments of Internal Medicine and Human Genetics.

Funding: National Institutes of Health, Sidney Kimmel Cancer Research Foundation, University of Michigan Cancer Center. Ferguson recently was awarded funding for five years as a Leukemia & Lymphoma Society Scholar.

Citations: Nature Structural and Molecular Biology, doi: 10.1038/nsmb.1639; Nature, doi:10.1038/nature08196

Resources: http://www.pathology.med.umich.edu/index.html http://www2.med.umich.edu/prmc/media/newsroom/details.cfm?ID=1009 U-M Cancer AnswerLine, 800-865-1125

Anne Rueter | UMHS News
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>