Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein complex key in avoiding DNA repair mistakes, cancer

31.07.2009
Lymphoma, other cancers may occur when a delicate gene recombination process in B cells goes awry, U-M study in mice suggests

As the body creates antibodies to fight invaders, a three-protein DNA repair complex called MRN is crucial for a normal gene-shuffling process to proceed properly, University of Michigan research shows.

The discoveries in mice, published online this week in Nature Structural and Molecular Biology, advance understanding of the immune system and shed light on how B-cell lymphoma and some other cancers may begin.

U-M scientists found that:

* When one protein in the MRN complex, Mre11, is absent, mistakes occur in a risky DNA break-and-repair process that routinely occurs in immune system B cells. The process is known as immunoglobulin class switch recombination.

* Incorrectly repaired DNA can alter the normal action of B lymphocytes and their offspring, whose job is to make antibodies to combat and protect against specific disease-causing microbes and other foreign agents.

“Class switch recombination represents a double-edged sword, being necessary for immune system function, but known to cause cancer when mistakes are made. We now understand that Mre11 and the MRN complex as a whole lie in the middle of this delicate balance,” says David O. Ferguson, M.D., Ph.D., the study’s senior author and assistant professor of pathology at the U-M Medical School.

Context

The MRN complex consists of three proteins, Mre11, Rad50 and Nbs1. The Ferguson study examined the role of Mre11.

The MRN complex is an emerging area of interest in medical science. MRN appears to be a key force in sensing and repairing DNA damage. In the DNA of cells throughout the body, damage known as double strand breaks occurs frequently, especially as people grow older. External causes such as exposure to toxic substances or ionizing radiation, or forces inside the body such as oxidative stress, can cause the breaks. Mistakes in the repair of breaks can lead to cancer.

The new study builds on an earlier study by Ferguson and his team published in Cell in October 2008, which showed that Mre11 both signals and repairs DNA damage.

Research details

The research team used complex mouse genetics to create mice with Mre11 mutations only in B lymphocytes. They then found that chromosomes were broken in Mre11-deficient B lymphocytes undergoing class switching. The breaks were located in the immunoglobulin locus, the site where class switch recombination occurs. This demonstrated that Mre11 is required for the actual repair of the intentional DNA damage, and implies a crucial role for Mre11 in preventing cancer.

“The link to cancer results from what is known to happen to DNA breaks at the immunoglobulin locus,” says Ferguson. “On rare occasions, these special DNA breaks can recombine with distant sites in the genome, and result in chromosome translocations that cause cancer.” For example, the immunoglobulin locus is found rearranged with oncogenes such as BCL2 or BCL6 in common human B-cell lymphomas.

Ferguson says it is possible that MRN deficiencies can lead to several types of lymphomas and leukemias, and may be involved in colon and breast cancer as well. Genetic variations related to the MRN complex also may be at the root of inherited immunodeficiency disorders, and to more mild symptoms of immunodeficiency that may affect greater numbers of people.

Ferguson is also a co-author of a related study of Mre11 published online this week in Nature. The two new studies together reveal that the same protein that assures normal B-cell function also plays a role in a type of gene damage associated with both cancer and aging.

The Nature Structural and Molecular Biology study shows that the body needs Mre11 action to properly repair double strand breaks in B cells, allowing the immune system to function correctly. But the Nature study reveals that Mre11’s repair action at the ends of chromosomes, called telomeres, can facilitate catastrophic chromosome fusing. Fused chromosomes are implicated in cancer and aging.

What’s next

In further research in mice, Ferguson and his team are now searching for specific evidence that double strand breaks get “misrepaired” in ways that lead to B-cell lymphoma. The research may eventually lead to human trials of new strategies in cancer diagnosis and treatment.

Additional authors: Maria Dinkelmann and Elizabeth Spehalski, co-first authors, U-M Department of Pathology; Trina Stoneham, Jeffrey Buis and Yipin Wu, U-M Department of Pathology; JoAnn M. Sekiguchi, U-M Departments of Internal Medicine and Human Genetics.

Funding: National Institutes of Health, Sidney Kimmel Cancer Research Foundation, University of Michigan Cancer Center. Ferguson recently was awarded funding for five years as a Leukemia & Lymphoma Society Scholar.

Citations: Nature Structural and Molecular Biology, doi: 10.1038/nsmb.1639; Nature, doi:10.1038/nature08196

Resources: http://www.pathology.med.umich.edu/index.html http://www2.med.umich.edu/prmc/media/newsroom/details.cfm?ID=1009 U-M Cancer AnswerLine, 800-865-1125

Anne Rueter | UMHS News
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>