Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein can help cells or cause cancer

09.07.2009
A Purdue University scientist has discovered a key process in cell growth that can lead to the formation of tumors.

Xiaoqi Liu, an assistant professor of biochemistry, found that an overabundance of the polo-like kinase 1, or Plk1, molecule during cell growth, as well as a shortage of the p53 molecule, will lead to tumor formation. Studies in Liu's laboratory showed that the Plk1 molecule indirectly attacks p53 in a process called ubiquitination.

"This provides the mechanism for how p53 loses its function in cancer cells," said Liu, whose work was published in the early online publication of the Journal of Biological Chemistry. "If we understand how the cancer forms, then we can create a more useful therapeutic approach to treating that cancer."

During cell growth, Plk1 uses its protein kinase activity called phosphorylation, which consists of adding a phosphate group to a protein called Topors. Topors binds itself to p53 molecules during the ubiquitination process. Phosphorylation is basically an instruction from Plk1 to increase its ubiquitination activity, which kills p53 molecules.

Liu said p53 could be thought of as a protective force. When Topors kills off that force, Plk1 becomes stronger, allowing the cells to become cancerous.

"We're trying to understand how p53 is regulated. We want to keep p53 as normal as possible," Liu said. "In about 50 percent of cancers, p53 had lost its function, and there was too much Plk1. Since Plk1 is overexpressed in cancers, it is a cancer therapy target."

Topors can also carry out a function called sumoylation, in which Topors binds to p53 molecules and creates more p53. Liu was able to force cells in his lab to go through the ubiquitination or sumoylation process to show how p53 molecules were affected.

Liu said it is unknown why the Plk1 molecule chooses to initiate ubiquitination over sumoylation.

Researchers from Sichuan University in China and faculty in the Department of Basic Medical Sciences at Purdue collaborated with Liu on the research. The work was funded through a Howard Temin Award from the National Institutes of Health.

Liu said the next step in the research is to test different Plk1 inhibitors to see how they affect the phosphorylation process.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Source: Xiaoqi Liu, 765-496-3764, xiaoqi@purdue.edu

Ag Communications: (765) 494-8415;
Steve Leer, sleer@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>