Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein can help cells or cause cancer

09.07.2009
A Purdue University scientist has discovered a key process in cell growth that can lead to the formation of tumors.

Xiaoqi Liu, an assistant professor of biochemistry, found that an overabundance of the polo-like kinase 1, or Plk1, molecule during cell growth, as well as a shortage of the p53 molecule, will lead to tumor formation. Studies in Liu's laboratory showed that the Plk1 molecule indirectly attacks p53 in a process called ubiquitination.

"This provides the mechanism for how p53 loses its function in cancer cells," said Liu, whose work was published in the early online publication of the Journal of Biological Chemistry. "If we understand how the cancer forms, then we can create a more useful therapeutic approach to treating that cancer."

During cell growth, Plk1 uses its protein kinase activity called phosphorylation, which consists of adding a phosphate group to a protein called Topors. Topors binds itself to p53 molecules during the ubiquitination process. Phosphorylation is basically an instruction from Plk1 to increase its ubiquitination activity, which kills p53 molecules.

Liu said p53 could be thought of as a protective force. When Topors kills off that force, Plk1 becomes stronger, allowing the cells to become cancerous.

"We're trying to understand how p53 is regulated. We want to keep p53 as normal as possible," Liu said. "In about 50 percent of cancers, p53 had lost its function, and there was too much Plk1. Since Plk1 is overexpressed in cancers, it is a cancer therapy target."

Topors can also carry out a function called sumoylation, in which Topors binds to p53 molecules and creates more p53. Liu was able to force cells in his lab to go through the ubiquitination or sumoylation process to show how p53 molecules were affected.

Liu said it is unknown why the Plk1 molecule chooses to initiate ubiquitination over sumoylation.

Researchers from Sichuan University in China and faculty in the Department of Basic Medical Sciences at Purdue collaborated with Liu on the research. The work was funded through a Howard Temin Award from the National Institutes of Health.

Liu said the next step in the research is to test different Plk1 inhibitors to see how they affect the phosphorylation process.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Source: Xiaoqi Liu, 765-496-3764, xiaoqi@purdue.edu

Ag Communications: (765) 494-8415;
Steve Leer, sleer@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>