Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein that boosts longevity may protect against diabetes

09.08.2012
Sirtuins help fight off disorders linked to obesity, new MIT study shows.

A protein that slows aging in mice and other animals also protects against the ravages of a high-fat diet, including diabetes, according to a new MIT study.

MIT biology professor Leonard Guarente ’74 discovered SIRT1’s longevity-boosting properties more than a decade ago and has since explored its role in many different body tissues. In his latest study, appearing in the Aug. 8 print edition of the journal Cell Metabolism, he looked at what happens when the SIRT1 protein is missing from adipose cells, which make up body fat.

When put on a high-fat diet, mice lacking the protein started to develop metabolic disorders, such as diabetes, much sooner than normal mice given a high-fat diet.

“We see them as being poised for metabolic dysfunction,” says Guarente, the Novartis Professor of Biology at MIT. “You’ve removed one of the safeguards against metabolic decline, so if you now give them the trigger of a high-fat diet, they’re much more sensitive than the normal mouse.”

The finding raises the possibility that drugs that enhance SIRT1 activity may help protect against obesity-linked diseases.

Guarente first discovered the effects of SIRT1 and other sirtuin proteins while studying yeast in the 1990s. Since then, these proteins have been shown to coordinate a variety of hormonal networks, regulatory proteins and other genes, helping to keep cells alive and healthy.

In recent years, Guarente and his colleagues have deleted the gene from organs such as brain and liver to pinpoint its effects more precisely. Their previous work has revealed that in the brain, SIRT1 protects against the neurodegeneration seen in Alzheimer’s, Huntington’s and Parkinson’s diseases.

SIRT1 is a protein that removes acetyl groups from other proteins, modifying their activity. The possible targets of this deacetylation are numerous, which is likely what gives SIRT1 its broad range of protective powers, Guarente says.

In the Cell Metabolism study, the researchers analyzed the hundreds of genes that were turned on in mice lacking SIRT1 but fed a normal diet, and found that they were almost identical to those turned on in normal mice fed a high-fat diet.

This suggests that in normal mice, development of metabolic disorders is a two-step process. “The first step is inactivation of SIRT1 by the high-fat diet, and the second step is all the bad things that follow that,” Guarente says.

The researchers investigated how this occurs and found that in normal mice given a high-fat diet, the SIRT1 protein is cleaved by an enzyme called caspase-1, which is induced by inflammation. It’s already known that high-fat diets can provoke inflammation, though it’s unclear exactly how that happens, Guarente says. “What our study says is that once you induce the inflammatory response, the consequence in the fat cells is that SIRT1 will be cleaved,” he says.

That finding “provides a nice molecular mechanism to understand how inflammatory signals in adipose tissue could lead to rapid derangement of metabolic tissue,” says Anthony Suave, an associate professor of pharmacology at Weill Cornell Medical College, who was not part of the research team.

Drugs that target that inflammatory process, as well as drugs that enhance sirtuin activity, might have some beneficial therapeutic effect against obesity-related disorders, Suave says.

The researchers also found that as normal mice aged, they were more susceptible to the effects of a high-fat diet than younger mice, suggesting that they lose the protective effects of SIRT1 as they age. Aging is known to increase inflammation, so Guarente is now studying whether that age-related inflammation also provokes SIRT1 loss.

This research was funded by the National Institutes of Health, the Glenn Medical Foundation and the American Heart Association.

Written by: Anne Trafton, MIT News Office

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>