Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Attributed to Membrane Repair Identified - Mechanism May Revolutionize Therapy in Human Disease

04.12.2008
Researchers at UMDNJ-Robert Wood Johnson Medical School have identified the protein MG53, as a key initiator of membrane repair in damaged tissue.

The study, released today in Nature Cell Biology, is the first to specifically pinpoint a protein responsible for promoting cell repair.

Led by Jianjie Ma, PhD, professor of physiology and biophysics, the discovery has the potential to be used as a therapeutic mechanism to repair tissue in humans, transforming treatment for patients who suffer from severe complications of disease and aging. This work was performed in collaboration with Professor Hiroshi Takeshima at Kyoto University, Japan.

“Membrane repair and remodeling is an essential process that maintains cell integrity and mediates efficient cellular function,” said Dr. Ma. “Our research shows that the protein MG53 initiates the repair mechanism in damaged tissue. Through further study, we hope to determine if MG53 can be used as a treatment in repairing human tissue that is damaged by common health conditions, including cardiovascular disease and aging.”

According to Dr. Ma, human cells are continuously injured and naturally repaired through the life span, such as micro tears caused as muscles contract within the body during normal everyday activities. However, diseases such as diabetes, cardiovascular disorders, muscular dystrophy, and even aging compromise the method in which the body repairs its own tissues, resulting in severe damage. The identification of MG53 provides hope that scientists can create therapies to treat or even prevent this damage. Through further research, Dr. Ma will study the potential for creating therapies for burn treatment, repairing sports injuries and peripheral wounds resulting from diabetes.

The research was supported by grants from the National Institutes of Health, the Ministry of Education, Science, Sports and Culture of Japan and the American Heart Association.

UMDNJ-ROBERT WOOD JOHNSON MEDICAL SCHOOL
As one of the nation’s leading comprehensive medical schools, Robert Wood Johnson Medical School of the University of Medicine and Dentistry of New Jersey is dedicated to the pursuit of excellence in education, research, health care delivery, and the promotion of community health. In cooperation with Robert Wood Johnson University Hospital, the medical school’s principal affiliate, they comprise New Jersey’s premier academic medical center. In addition, Robert Wood Johnson Medical School has 34 hospital affiliates and ambulatory care sites throughout the region.

As one of the eight schools of the University of Medicine and Dentistry of New Jersey with 2,500 full-time and volunteer faculty, Robert Wood Johnson Medical School encompasses 22 basic science and clinical departments and hosts centers and institutes including The Cancer Institute of New Jersey, the Child Health Institute of New Jersey, the Center for Advanced Biotechnology and Medicine, the Environmental and Occupational Health Sciences Institute, and the Stem Cell Institute of New Jersey. The medical school maintains educational programs at the undergraduate, graduate and postgraduate levels for more than 1,500 students on its campuses in New Brunswick, Piscataway, and Camden, and provides continuing education courses for health care professionals and community education programs.

Jennifer Forbes | Newswise Science News
Further information:
http://www.umdnj.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>