Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein anchors help keep embryonic development 'just right'

13.06.2014

The "Goldilocks effect" in fruit fly embryos may be more intricate than previously thought.

It's been known that specific proteins, called histones, must exist within a certain range—if there are too few, a fruit fly's DNA is damaged; if there are too many, the cell dies.


Histones (shown in green) in fruit fly embryos. They are stored on lipid droplets (small dots/rings) and -- when needed -- travel to nuclei (large spheres) to package DNA into chromosomes.

Credit: Photo by Zhihuan Li/University of Rochester.

Now research out of the University of Rochester shows that different types of histone proteins also need to exist in specific proportions. The work further shows that cellular storage facilities keep over-produced histones in reserve until they are needed.

Associate Professor of Biology Michael Welte has discovered that the histone balance is regulated by those storage facilities, called lipid droplets—which are best known as fat depots.

The findings were published today in the journal Current Biology.

Welte had previously discovered that another protein—called Jabba—anchored histones onto lipid droplets. In his latest research, he found that excess histones migrate outside the nucleus to the droplets, where they are temporarily held until needed to create new chromosomes.

"People have observed histone proteins on lipid droplets in multiple organisms, including mammals," said Welte. "The results of this research project may very well help us understand the role of histones and lipid droplets in humans."

Welte found that by deleting the Jabba anchors from the cell, one particular type of histone increased in proportion in the nucleus, since they had no way to be held in reserve away from the cell nuclei. That made the embryo more sensitive to environmental stresses like higher temperature, leading to defects during cell division and reduced viability.

Just as it is in humans, the embryonic stage is a crucial time for the fruit fly (Drosophila melanogaster). Starting from a single cell, it has to rapidly multiply in cell number and develop into a larva while coping with stresses from the environment. The embryo does all of that by activating a myriad of genetic on-off switches, a process that involves unwrapping and rewrapping various regions of DNA.

Histones are important to the process because they act as spools that DNA molecules wrap around to form chromosomes, making it possible for the DNA to do its work in the first place. Welte discovered that if the different histones are not in the correct proportion, the embryo has trouble developing correctly and may even die.

Achieving the correct proportion of histones is not something that happens automatically in the fruit fly embryo, as Welte found in his research. Instead, when a certain histone type is made in excess, it is redirected to the lipid-droplet holding sites outside the nucleus where it is kept until needed.

Welte and his team will try next to identify which parts of the Jabba protein actually bind with the histone. Once that's determined, scientists may have the ability to manipulate the histone storage process.

"Since histones and lipid droplets are found in humans, I very much expect that there will be a similar storage process," said Welte. "If that is the case, our findings could one day help treat or prevent diseases linked to chromosome malfunction. What I find most fascinating is that our research uncovered this intimate link between cellular fat depots and the nucleus, a connection that just a few years ago nobody would have dreamt of. "

###

The research team included Zhihuan Li, Matthew Johnson, Zhonghe Ke and Lili Chen. The research was supported by a grant from the National Institutes of Health.

Peter Iglinski | Eurek Alert!

Further reports about: Biology DNA Drosophila Protein chromosomes discovered droplets fly histones humans proteins stresses

More articles from Life Sciences:

nachricht How Neural Circuits Implement Natural Vision
24.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Epigenetic Modification Increases Susceptibility to Obesity and Predicts Fatty Liver Later in Life
23.05.2016 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Astronomers confirm faintest early-universe galaxy ever seen

24.05.2016 | Physics and Astronomy

Scientists find sustainable solutions for oysters in the future by looking into the past

24.05.2016 | Earth Sciences

Laser-manufactured customized lenses

24.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>