Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein anchors help keep embryonic development 'just right'

13.06.2014

The "Goldilocks effect" in fruit fly embryos may be more intricate than previously thought.

It's been known that specific proteins, called histones, must exist within a certain range—if there are too few, a fruit fly's DNA is damaged; if there are too many, the cell dies.


Histones (shown in green) in fruit fly embryos. They are stored on lipid droplets (small dots/rings) and -- when needed -- travel to nuclei (large spheres) to package DNA into chromosomes.

Credit: Photo by Zhihuan Li/University of Rochester.

Now research out of the University of Rochester shows that different types of histone proteins also need to exist in specific proportions. The work further shows that cellular storage facilities keep over-produced histones in reserve until they are needed.

Associate Professor of Biology Michael Welte has discovered that the histone balance is regulated by those storage facilities, called lipid droplets—which are best known as fat depots.

The findings were published today in the journal Current Biology.

Welte had previously discovered that another protein—called Jabba—anchored histones onto lipid droplets. In his latest research, he found that excess histones migrate outside the nucleus to the droplets, where they are temporarily held until needed to create new chromosomes.

"People have observed histone proteins on lipid droplets in multiple organisms, including mammals," said Welte. "The results of this research project may very well help us understand the role of histones and lipid droplets in humans."

Welte found that by deleting the Jabba anchors from the cell, one particular type of histone increased in proportion in the nucleus, since they had no way to be held in reserve away from the cell nuclei. That made the embryo more sensitive to environmental stresses like higher temperature, leading to defects during cell division and reduced viability.

Just as it is in humans, the embryonic stage is a crucial time for the fruit fly (Drosophila melanogaster). Starting from a single cell, it has to rapidly multiply in cell number and develop into a larva while coping with stresses from the environment. The embryo does all of that by activating a myriad of genetic on-off switches, a process that involves unwrapping and rewrapping various regions of DNA.

Histones are important to the process because they act as spools that DNA molecules wrap around to form chromosomes, making it possible for the DNA to do its work in the first place. Welte discovered that if the different histones are not in the correct proportion, the embryo has trouble developing correctly and may even die.

Achieving the correct proportion of histones is not something that happens automatically in the fruit fly embryo, as Welte found in his research. Instead, when a certain histone type is made in excess, it is redirected to the lipid-droplet holding sites outside the nucleus where it is kept until needed.

Welte and his team will try next to identify which parts of the Jabba protein actually bind with the histone. Once that's determined, scientists may have the ability to manipulate the histone storage process.

"Since histones and lipid droplets are found in humans, I very much expect that there will be a similar storage process," said Welte. "If that is the case, our findings could one day help treat or prevent diseases linked to chromosome malfunction. What I find most fascinating is that our research uncovered this intimate link between cellular fat depots and the nucleus, a connection that just a few years ago nobody would have dreamt of. "

###

The research team included Zhihuan Li, Matthew Johnson, Zhonghe Ke and Lili Chen. The research was supported by a grant from the National Institutes of Health.

Peter Iglinski | Eurek Alert!

Further reports about: Biology DNA Drosophila Protein chromosomes discovered droplets fly histones humans proteins stresses

More articles from Life Sciences:

nachricht Strong Evidence – New Insight in Muscle Function
27.04.2015 | Austrian Science Fund FWF

nachricht Cell fusion ‘eats up’ the ‘attractive cell’ in flowering plants
27.04.2015 | Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Strong Evidence – New Insight in Muscle Function

27.04.2015 | Life Sciences

The Future of Oil and Gas: Last of Her Kind

27.04.2015 | Power and Electrical Engineering

Tiny Lab Devices Could Attack Huge Problem of Drug-Resistant Infections

27.04.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>