Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein 'tubules' free avian flu virus from immune recognition

A protein found in the virulent avian influenza virus strain called H5N1 forms tiny tubules in which it "hides" the pieces of double-stranded RNA formed during viral infection, which otherwise would prompt an antiviral immune response from infected cells, said Baylor College of Medicine researchers in an online report in the journal Nature.

Two domains or portions of the protein NS1 combine to form tiny tubules where double-stranded RNA is hidden from the immune system, said Dr. B. V. Venkataram Prasad, professor of biochemistry and molecular biology, molecular virology and microbiology at BCM and his student, Dr. Zachary A. Bornholdt (now of the Scripps Research Institute in La Jolla, California).

"Once we confirm the importance of this structural information, we should be able to design drugs to block this action," said Prasad. "There are other things the protein could do to interfere with different immune mechanisms. We don't know if this is the only mechanism or if there are others that also come into play during influenza virus infection."

The two researchers had already recognized the importance of the protein NS1 in the virulence of influenza viruses and particularly, H5N1, a form of avian flu associated with more than half the deaths in a 2004 "bird flu" outbreak that resulted in 50 human cases and 36 deaths in Vietnam, China and Thailand. In all but one case, experts ruled out human-to-human spread of the virus. In a previous report, Prasad and Bornholdt described the structure of an area of the protein called the effector domain. In this report, a series of elegant experiments designed and carried out over eight months by Bornholdt allowed the two scientists to "crystallize" the entire protein.

By doing this, they were able to determine its structure using a technique called X-ray crystallography. This technique enables scientists to determine the three-dimensional structure of proteins and other bio-molecules by scattering X-rays through a crystal of the molecule. They substantiated their structure with cryo-electron microscopy, which makes images of tiny frozen structures using an extremely powerful electron microscope.

That structure revealed a previously unsuspected idiosyncrasy of NS1 in H5N1 that could explain the virus' virulence. In most cases, when an infected cell is exposed to a virus, double-stranded RNA molecules are formed triggering a potent anti-viral response that involves production of interferon.

However, the two domains of NS1 in this H5N1 interact to form tiny tubules. The double-stranded RNA is hidden or sequestered in these structures. The cell never sees a significant length of the RNA and does not marshal its immune forces to the fight the virus. Prasad and Bornholdt believe also that cellular factor binding sites found on the surface of the tubules also play a role in fooling the immune system.

"This is only one structure," said Prasad. "We need to see if this holds up with other NS1 structures from other influenza viruses."

Bornholdt's technique for crystallizing the protein will prove valuable in pursuing this work, said Prasad.

"Is this a common mechanism for eluding the immune system?" he said. He said hopes to build a library to NS1 structures to facilitate future studies designed to fight influenza worldwide.

While H5N1 is not usually transmitted from human-to-human at this point, a small change in its genetic structure – perhaps an exchange of genes with a more easily transmitted flu virus – could change that, he said. Developing drugs to fight the virus could prove life-saving in a pandemic.

Graciela Gutierrez | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>