Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein 'tubules' free avian flu virus from immune recognition

07.11.2008
A protein found in the virulent avian influenza virus strain called H5N1 forms tiny tubules in which it "hides" the pieces of double-stranded RNA formed during viral infection, which otherwise would prompt an antiviral immune response from infected cells, said Baylor College of Medicine researchers in an online report in the journal Nature.

Two domains or portions of the protein NS1 combine to form tiny tubules where double-stranded RNA is hidden from the immune system, said Dr. B. V. Venkataram Prasad, professor of biochemistry and molecular biology, molecular virology and microbiology at BCM and his student, Dr. Zachary A. Bornholdt (now of the Scripps Research Institute in La Jolla, California).

"Once we confirm the importance of this structural information, we should be able to design drugs to block this action," said Prasad. "There are other things the protein could do to interfere with different immune mechanisms. We don't know if this is the only mechanism or if there are others that also come into play during influenza virus infection."

The two researchers had already recognized the importance of the protein NS1 in the virulence of influenza viruses and particularly, H5N1, a form of avian flu associated with more than half the deaths in a 2004 "bird flu" outbreak that resulted in 50 human cases and 36 deaths in Vietnam, China and Thailand. In all but one case, experts ruled out human-to-human spread of the virus. In a previous report, Prasad and Bornholdt described the structure of an area of the protein called the effector domain. In this report, a series of elegant experiments designed and carried out over eight months by Bornholdt allowed the two scientists to "crystallize" the entire protein.

By doing this, they were able to determine its structure using a technique called X-ray crystallography. This technique enables scientists to determine the three-dimensional structure of proteins and other bio-molecules by scattering X-rays through a crystal of the molecule. They substantiated their structure with cryo-electron microscopy, which makes images of tiny frozen structures using an extremely powerful electron microscope.

That structure revealed a previously unsuspected idiosyncrasy of NS1 in H5N1 that could explain the virus' virulence. In most cases, when an infected cell is exposed to a virus, double-stranded RNA molecules are formed triggering a potent anti-viral response that involves production of interferon.

However, the two domains of NS1 in this H5N1 interact to form tiny tubules. The double-stranded RNA is hidden or sequestered in these structures. The cell never sees a significant length of the RNA and does not marshal its immune forces to the fight the virus. Prasad and Bornholdt believe also that cellular factor binding sites found on the surface of the tubules also play a role in fooling the immune system.

"This is only one structure," said Prasad. "We need to see if this holds up with other NS1 structures from other influenza viruses."

Bornholdt's technique for crystallizing the protein will prove valuable in pursuing this work, said Prasad.

"Is this a common mechanism for eluding the immune system?" he said. He said hopes to build a library to NS1 structures to facilitate future studies designed to fight influenza worldwide.

While H5N1 is not usually transmitted from human-to-human at this point, a small change in its genetic structure – perhaps an exchange of genes with a more easily transmitted flu virus – could change that, he said. Developing drugs to fight the virus could prove life-saving in a pandemic.

Graciela Gutierrez | EurekAlert!
Further information:
http://www.bcm.edu
http://www.nature.com
http://www.bcm.edu/fromthelab

More articles from Life Sciences:

nachricht Scientists discover species of dolphin that existed along South Carolina coast
24.08.2017 | New York Institute of Technology

nachricht The science of fluoride flipping
24.08.2017 | University of North Carolina Health Care

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Optimizing therapy planning for cancers of the liver

24.08.2017 | Medical Engineering

Icebergs: Mathematical model calculates the collapse of shelf ice

24.08.2017 | Earth Sciences

Improved monitoring of coral reefs with the HyperDiver

24.08.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>