Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein 'switches' could turn cancer cells into tiny chemotherapy factories

26.09.2011
Johns Hopkins researchers have devised a protein "switch" that instructs cancer cells to produce their own anti-cancer medication.

In lab tests, the researchers showed that these switches, working from inside the cells, can activate a powerful cell-killing drug when the device detects a marker linked to cancer. The goal, the scientists said, is to deploy a new type of weapon that causes cancer cells to self-destruct while sparing healthy tissue.

This new cancer-fighting strategy and promising early lab test results were reported this week in the online early edition of Proceedings of the National Academy of Sciences. Although the switches have not yet been tested on human patients, and much more testing must be done, the researchers say they have taken a positive first step toward adding a novel weapon to the difficult task of treating cancer.

One key problem in fighting cancer is that broadly applied chemotherapy usually also harms healthy cells. In the protein switch strategy, however, a doctor would instead administer a "prodrug," meaning an inactive form of a cancer-fighting drug. Only when a cancer marker is present would the cellular switch turn this harmless prodrug into a potent form of chemotherapy.

"The switch in effect turns the cancer cell into a factory for producing the anti-cancer drug inside the cancer cell," said Marc Ostermeier, a Johns Hopkins chemical and biomolecular engineering professor in the Whiting School of Engineering, who supervised development of the switch.

"The healthy cells will also receive the prodrug," he added, "and ideally it will remain in its non-toxic form. Our hope is that this strategy will kill more cancer cells while decreasing the unfortunate side effects on healthy cells."

To demonstrate that these switches can work, the research team successfully tested them on human colon cancer and breast cancer cells in Ostermeier's lab and in the laboratory of James R. Eshleman, a professor of pathology and oncology in the Johns Hopkins School of Medicine.

"This is a radically different tool to attack cancers," said Eshleman, a co-author of the PNAS journal article, "but many experiments need to be done before we will be able to use it in patients."

The next step is animal testing, expected to begin within a year, Ostermeier said.

Ostermeier's team made the cancer-fighting switch by fusing together two different proteins. One protein detects a marker that cancer cells produce. The other protein, from yeast, can turn an inactive prodrug into a cancer-cell killer. "When the first part of the switch detects cancer, it tells its partner to activate the chemotherapy drug, destroying the cell," Ostermeier said.

In order for this switch to work, it must first get inside the cancer cells. Ostermeier said this can be done through a technique in which the switch gene is delivered inside the cell. The switch gene serves as the blueprint from which the cell's own machinery constructs the protein switch. Another approach, he said, would be to develop methods to deliver the switch protein itself to cells.

Once the switches are in place, the patient would receive the inactive chemotherapy drug, which would turn into a cancer attacker inside the cells where the switch has been flipped on.

Although many researchers are developing methods to deliver anti-cancer drugs specifically to cancer cells, Ostermeier said the protein switch tactic skirts difficulties encountered in those methods.

"The protein switch concept changes the game by providing a mechanism to target production of the anti-cancer drugs inside cancer cells instead of targeting delivery of the anti-cancer drug to cancer cells," he said.

The lead author of the PNAS study was Chapman M. Wright, who worked on the project as an assistant research scientist in Ostermeier's lab and who now works for a private biotech company. Co-authors on the paper were Ostermeier, Eshleman and R. Clay Wright (not related to Chapman Wright), a doctoral student in Ostermeier's lab. Through the Johns Hopkins Technology Transfer office, Ostermeier and Chapman Wright have filed for patent protection covering the protein switch for cancer technology.

The research was funded by the National Institutes of Health. The paper, "A protein therapeutic modality founded on molecular recognition," can be viewed online at: http://www.pnas.org/content/early/2011/09/12/1102803108.full.pdf+html

Related links:
Marc Ostermeier's Lab Page: http://www.jhu.edu/chembe/ostermeier/
Department of Chemical and Biomolecular Engineering: http://www.jhu.edu/chembe/

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>