Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protection for stressed-out bacteria identified

10.10.2008
An international team of researchers is a step closer to understanding the spread of deadly diseases such as listeriosis, after observing for the first time how bacteria respond to stress.

The research, published in the October issue of the prestigious international journal Science, details how a huge molecule called a stressosome protects bacterial cells from external stress and danger.

Scientists from the University of Newcastle in Australia, and Newcastle University and Imperial College in the United Kingdom, collaborated on the discovery.

Associate Professor Peter Lewis from the Faculty of Science and Information Technology at the University of Newcastle in Australia said until now, researchers had not fully understood how bacteria responded to stress and potential danger.

"It is important to understand the changes that occur when bacteria are under stress as this is the point at which they are likely to become most infectious.

"The protein molecules that make up the stressosome are found in a very wide range of bacteria. Some of these bacteria cause diseases such as listeriosis that has a 30 per cent mortality rate, and melioidosis that has a mortality rate as high as 90 per cent and is a significant health problem in northern Australia and south-east Asia.

"With bacteria becoming increasingly resistant to antibiotics, understanding how the stress response is controlled could lead to the development of drugs that help prevent bacterial infection from occurring."

Lead author of the Science paper, Professor Rick Lewis from Newcastle University in the United Kingdom, said the team used groundbreaking techniques to observe the stressosomes. Electron microscopy techniques were developed by Professor Marin van Heel of Imperial College and Associate Professor Peter Lewis developed the fluorescence microscopy imaging techniques.

"We knew that when bacteria were stressed, a warning signal would be sent from the surface to the inside of the cell. The stressosome would then respond by triggering new proteins in the cell to react to the stress.

"Our latest work has revealed the structure and number of stressosomes per cell. This has helped us understand how quickly the stressosomes respond to external stresses and prepare the cell to adapt to changes in its environment and ensure its survival."

Blythe Hamilton | EurekAlert!
Further information:
http://www.newcastle.edu.au

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>