Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protecting genes, one molecule at a time

An international team of scientists have shown at an unprecedented level of detail how cells prioritise the repair of genes containing potentially dangerous damage.

The research, published in the journal Nature and involving academics from the University of Bristol, the Institut Jacques-Monod in France and Rockefeller University in the US, studied the action of individual molecules in order to understand how cellular repair pathways are triggered.

The genetic information that forms the "instruction booklet" for cells is encoded in the molecular building blocks of DNA, and can be damaged by mutagens such as ultraviolet light or tobacco smoke, as well as by normal "wear and tear" as the cells age. If left unrepaired, such damage can kill the cells or cause them to change their behaviour and perhaps cause disease.

Cells protect themselves by producing proteins that detect the damaged building blocks, cut them out and replace them with a patch of new DNA. Most cells, including bacteria and humans, contain mechanisms that ensure that the genes that are currently in use are repaired most quickly.

The team, led by Dr Terence Strick of the Institut Jacques Monod, Paris, used single molecules of DNA stretched in a magnetic field to watch individual proteins work on an active, damaged gene. They found that more steps are needed to repair the damage than previously thought, and that the length of time that the proteins reading the gene hesitate when they reach the damage is likely to be critical for a successful handover to the proteins that repair the gene.

Dr Nigel Savery from the University's School of Biochemistry, who led the Bristol-based part of the project, said: "Finding out how different parts of the genome are repaired at different rates is critical to understanding processes as diverse as generation of antibiotic resistance in bacteria and the patterns of mutations that give rise to cancer. Studying these processes at the level of single molecules has allowed us to detect important steps that are hidden when large numbers of molecules are studied together."

The work in Bristol was funded by the Biotechnology and Biological Research Council (BBSRC), UK.


Paper Initiation of transcription-coupled repair characterized at single-molecule resolution" is published online (ahead of print) in the journal Nature on 9 September 2012. doi: 10.1038/nature11430

Kévin Howan1, Abigail J. Smith2, Lars F. Westblade3, Nicolas Joly1, Wilfried Grange1, Sylvain Zorman1, Seth A. Darst3, Nigel J. Savery2 & Terence R. Strick1

1. Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Paris, France.

2. DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, England

3. The Rockefeller University, 1230 York Avenue, New York, USA

Caroline Clancy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>