Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protecting the brain from of a deadly genetic disease

23.02.2010
Huntington's disease (HD) is a cruel, hereditary condition that leads to severe physical and mental deterioration, psychiatric problems and eventually, death. Currently, there are no treatments to slow down or stop it.

HD sufferers are born with the disease although they do not show symptoms until late in life. In a new study published in The Journal of Neuroscience, Stephen Ferguson and Fabiola Ribeiro of Robarts Research Institute at The University of Western Ontario identified a protective pathway in the brain that may explain why HD symptoms take so long to appear. The findings could also lead to new treatments for HD.

The symptoms of Huntington's disease are caused by cell death in specific regions of the brain. Patients who have HD are born with a mutated version of the protein huntingtin (Htt), which is thought to cause these toxic effects. While researchers know HD results from this single, mutated protein, no one seems to know exactly what it does, why it does not cause symptoms until later in life, or why it kills a specific set of brain cells, even though Htt is found in every single cell in the human body.

Ferguson and Ribeiro used a genetically-modified mouse model of HD to look at the effects of mutated Htt on the brain. "We found there was some kind of compensation going on early in the life of these mice that was helping to protect them from the development of the disease," says Ferguson, director of the Molecular Brain Research Group at Robarts, and a professor in the Department of Physiology & Pharmacology at Western's Schulich School of Medicine and Dentistry. "As they age, they lose this compensation and the associated protective effects, which could explain the late onset of the disease."

Ferguson adds that metabotropic glutamate receptors (mGluRs), which are responsible for communication between brain cells, play an important role in these protective effects. By interacting with the mutant Htt protein, mGluRs change the way the brain signals in the early stages of HD in an attempt to offset the disease, and save the brain from cell death. As a result, mGluRs could offer a drug target for HD treatment.

Because HD is a dominant genetic disease, every child with an affected parent has a 50 per cent chance of inheriting the fatal condition. This research, funded by the Canadian Institutes of Health Research, sheds light on the onset of HD and the potential role of a mutant protein in patients, paving the way for the development of new drug therapies.

Kathy Wallis | EurekAlert!
Further information:
http://www.uwo.ca

Further reports about: HD symptoms Protecting apples brain cell cell death mutated protein

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>