Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Well protected: Pathogens in Biofilm

18.06.2012
People with the hereditary disease "cystic fibrosis" usually die as a result of chronic pulmonary infections.
The scientists in Prof. Urs Jenal’s team at the Biozentrum of the University of Basel have discovered that genetic modifications in a pathogen causing pneumonia help it to persist life-long in the lungs of a patient. The findings are published in the current issue of the journal PLoS Pathogens.

Living in a community provides protection from unfavorable external influences and improves the survival chances of each single individual. A pathogen of pneumonia, Pseudomonas aeruginosa, exploits this advantage. It produces a harmful biofilm in the lungs of patients with cystic fibrosis, causing chronic infections which permanently damage the lung tissue. A particularly resistant form of this pathogen is the small colony variant (CSV). Bacteria of this type coat themselves in an extremely thick matrix of a sticky polysaccharide compound, which enables strong adhesion of the biofilm to the surface of the lung.

Pathogens in Biofilm: Pseudomonas aeruginosa, a causative agent for pneumonia. (Photo: University of Basel)

Chronic infections through modified pathogens

The production of the polysaccharide compound is regulated by three proteins interacting in close cooperation with each other. As Urs Jenal’s team at the Biozentrum of the University of Basel have been able to demonstrate for the first time, that mutations in these proteins lead to the development of strongly adhesive SCV bacteria.

In altering single protein building blocks, the scientists disrupted the finely tuned interactions between the three proteins and thus activated the signaling pathway for the production of the sticky polysaccharide matrix.

In a second step, the researchers investigated whether such modifications contribute to the pneumonia pathogen’s life-long persistence in the lungs of patients with cystic fibrosis. To do this they isolated the SCV bacteria in samples from patients and examined their DNA.
"Our research group could find various mutations in the blueprint for the proteins. Amongst them, the same mutations that we had previously identified as causing activation." explained Jenal. "These genetic mutations contribute as a causing factor to the production of the stable bacterial biofilm of Pseudomonas aeruginosa."

The survival advantage of a microbial community
In people who have cystic fibrosis, the pathogen of the SCV type can withstand challenges from the immune system and antibiotics better than normal bacteria. They are the source of the repeated new break-outs of pulmonary infections and ultimately the main cause of the fatal course of the disease. With their newly acquired knowledge, Jenal and his team would now like to develop new methods, to combat the pathogens effectively and thus prevent chronic lung infections.

Original Article
Jacob G. Malone, Tina Jaeger, Pablo Manfredi, Andreas Dötsch, Andrea Blanka, Guy R. Cornelis, Susanne Häussler and Urs Jenal
The YfiBNR signal transduction mechanism reveals novel targets for the evolution of persistent Pseudomonas aeruginosa in cystic fibrosis airways
PLoS Pathogens, published 14 Jun 2012 | doi: 10.1371/journal.ppat.1002760

Media contact
Prof. Dr. Urs Jenal, University of Basel, Biozentrum, Growth & Development and Infection Biology, Klingelbergstrasse 50/70, 4056 Basel, Tel: +41 61 267 21 35, E-Mail: urs.jenal@unibas.ch

Katrin Bühler | Universität Basel
Further information:
http://www.unibas.ch
http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1002760

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>