Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising treatment for metastatic melanoma 'fast tracked' by FDA

10.09.2010
John Theurer Cancer Center researchers played important role in landmark study, published in New England Journal of Medicine

Researchers from the John Theurer Cancer Center at Hackensack University Medical Center played an important role in a study that led to the Food & Drug Administration's (FDA) recent fast tracking of ipilimumab, a promising treatment for metastatic melanoma. The FDA based its decision largely on the results of a pivotal study published in the New England Journal of Medicine on August 19, 2010 – the same day the agency accepted Bristol-Myers Squibb's application for the drug's approval and granted the application priority review status.

Ipilimumab is the first drug shown in randomized, placebo-controlled trials to improve survival in stage IV melanoma.

"This study, and the FDA's decision, provides new hope for people with this devastating cancer," said Andrew L. Pecora, M.D., F.A.C.P., C.P.E., Chairman and Executive Administrative Director, John Theurer Cancer Center, who led the study at the John Theurer Cancer Center. "We are proud to have played a role in helping move another promising cancer treatment closer to market."

The incidence of metastatic melanoma has increased over the last three decades, and the death rate continues to climb faster than that of most other cancers. According to the American Cancer Society, there were approximately 68,000 new cases of melanoma in the United States in 2009, and 8,700 melanoma-related deaths. Melanoma accounts for about three percent of all skin cancers, but 80 percent of skin cancer deaths. Melanoma is difficult to treat once it has spread beyond the skin to other parts of the body (metastasized). Very few treatment options exist for people with metastatic melanoma.

In this phase III study, researchers randomly assigned patients to one of three treatment groups: those receiving ipilimumab plus an inactive (placebo) version of gp 100, a cancer vaccine; those receiving ipilimumab plus gp 100; and those receiving gp 100 plus ipilimumab placebo. The treatments were administered once every three weeks, for a total of four treatments. The study was double blinded: neither the researchers nor the patients knew which medications the patients were being given.

To participate in the study, patients must have had stage III or IV (metastatic) melanoma, and must have been previously treated unsuccessfully with another cancer drug. They must also have had a life expectancy of at least four months. 676 patients participated in the study at 125 cancer centers.

Those who received ipilimumab, both by itself and with gp 100, lived a median of about 10 months, while those who received only gp 100 lived about 6.4 months. After two years, approximately 23 percent of those who got ipilimumab were alive, while 14 percent of those who did not receive this drug survived. Ten to 15 percent of those who received ipilimumab suffered attacks on their bodies' immune systems (autoimmune reactions), and seven of the 540 patients who got this drug died from these attacks. Most adverse events suffered by study participants, however, were reversible with treatment.

A monoclonal antibody, ipilimumab activates the body's immune system to fight cancer by blocking a protein called CTLA-4. CTLA-4 is a molecule on T-cells, white blood cells that play a critical role in regulating immune responses. CTLA-4 suppresses the immune system's response to disease, so blocking its activity stimulates the immune system to fight the melanoma.

The FDA grants priority review status to drugs that offer major advances in treatment, or that provide treatment where no adequate therapy exists. The projected FDA action date for the ipilimumab application is December 25, 2010.

The John Theurer Cancer Center has more than 100 clinical trials under way for all types of cancer and life-threatening blood disorders. Clinical trials test the safety and effectiveness of new medications, therapies, treatment regimens, devices, and adjuvant treatments in human patients. These clinical trials are conducted independently or in cooperation with pharmaceutical companies, universities, other cancer centers, and national organizations such as the National Cancer Institute, the American Cancer Society, the National Science Foundation, and the National Institutes of Health.

"Our commitment to providing outstanding patient care and leading edge treatments extends to our leadership or participation in major clinical trials," said Dr. Pecora. "We are dedicated to improving treatment outcomes not just for our patients, but for all of those with cancer."

Results of this study were originally presented at the American Society of Clinical Oncology (ASCO) Annual Meeting in June 2010, and published online by the New England Journal of Medicine to coincide with the presentation.

About the John Theurer Cancer Center at Hackensack University Medical Center

The John Theurer Cancer Center at Hackensack University Medical Center is New Jersey's largest and most comprehensive center dedicated to the diagnosis, treatment, management, research, screenings, and preventive care as well as survivorship of patients with all types of cancer. The 15 specialized divisions covering the complete spectrum of cancer care have developed a close-knit team of medical, research, nursing, and support staff with specialized expertise that translates into more advanced, focused care for all patients. Each year, more people in the New Jersey/New York metropolitan area turn to the John Theurer Cancer Center for cancer care than to any other facility in New Jersey. Housed within a 775-bed not-for-profit teaching, tertiary care, and research hospital, the John Theurer Cancer Center provides state-of-the-art technological advances, compassionate care, research innovations, medical expertise, and a full range of after care services that distinguish the John Theurer Cancer Center from other facilities.

Amy Leahing | EurekAlert!
Further information:
http://www.humccancer.org

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>