Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising discovery in the fight against antibiotic-resistant bacteria

23.05.2014

Researchers at the University of British Columbia have identified a small molecule that prevents bacteria from forming into biofilms, a frequent cause of infections. The anti-biofilm peptide works on a range of bacteria including many that cannot be treated by antibiotics.

"Currently there is a severe problem with antibiotic-resistant organisms," says Bob Hancock, a professor in UBC's Dept. of Microbiology and Immunology and lead author of the study published today in PLOS Pathogens.

"Our entire arsenal of antibiotics is gradually losing effectiveness."

Many bacteria that grow on skin, lung, heart and other human tissue surfaces form biofilms, highly structured communities of bacteria that are responsible for two-thirds of all human infections.

There are currently no approved treatments for biofilm infections and bacteria in biofilms are considerably more resistant to standard antibiotics.

Hancock and his colleagues found that the peptide known as 1018-- consisting of just 12 amino acids, the building blocks of protein--destroyed biofilms and prevented them from forming.

Bacteria are generally separated into two classes, Gram-positives and Gram-negatives, and the differences in their cell wall structures make them susceptible to different antibiotics. 1018 worked on both classes of bacteria as well as several major antibiotic-resistant pathogens, including Pseudomonas aeruginosa, E. coli and MRSA.

"Antibiotics are the most successful medicine on the planet. The lack of effective antibiotics would lead to profound difficulties with major surgeries, some chemotherapy treatments, transplants, and even minor injuries," says Hancock. "Our strategy represents a significant advance in the search for new agents that specifically target bacterial biofilms."

Heather Amos | Eurek Alert!
Further information:
http://www.ubc.ca

Further reports about: Immunology Promising Pseudomonas aeruginosa antibiotics bacteria effectiveness infections surfaces

More articles from Life Sciences:

nachricht IU-led study reveals new insights into light color sensing and transfer of genetic traits
06.05.2016 | Indiana University

nachricht Thievish hoverfly steals prey from carnivorous sundews
06.05.2016 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Expanding tropics pushing high altitude clouds towards poles, NASA study finds

06.05.2016 | Earth Sciences

IU-led study reveals new insights into light color sensing and transfer of genetic traits

06.05.2016 | Life Sciences

Thievish hoverfly steals prey from carnivorous sundews

06.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>