Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising candidates for malaria vaccine revealed

19.01.2010
Walter and Eliza Hall Institute researchers have uncovered a group of proteins that could form the basis of an effective vaccine against malaria.

Presently there is no malaria vaccine available, and these new findings support the development of a vaccine against the blood-stage of malaria.

Malaria is an infection of blood cells and is transmitted by mosquitoes. The most common form of malaria is caused by the parasite Plasmodium falciparum. Malaria parasites burrow into red blood cells by producing specific proteins. Once inside red blood cells, the parasites rapidly multiply, leading to massive numbers of parasites in the blood stream that can cause severe disease and death.

Dr James Beeson, Dr Freya Fowkes and Dr Jack Richards from the institute's Infection and Immunity division, along with Dr Julie Simpson from the University of Melbourne, have identified proteins produced by malaria parasites during the blood-stage that are effective at promoting immune responses that protect people from malaria illness.

Their findings are published today in the international journal PLoS Medicine.

Drs Fowkes and Beeson identified these proteins by reviewing and synthesising data from numerous scientific studies that had looked at the relationship between antibodies produced by the human immune system in response to malaria infection and the ability of these antibodies to protect against malaria.

Dr Beeson said malaria caused by Plasmodium falciparum was a leading cause of death and disease globally, particularly among young children. "As well as presenting an enormous health burden, malaria also has a major impact on social and economic development in countries where the disease is endemic," Dr Beeson said. "Vaccines are urgently needed to reduce the burden of malaria and perhaps eventually eradicate the disease.

"A malaria vaccine that stimulates an efficient immune response against the proteins that malaria parasites use to burrow into red blood cells would stop the parasite from replicating and prevent severe illness."

Dr Fowkes said the review of existing studies had illustrated how little was known about blood-stage malaria proteins and their suitability for use in vaccine development.

"Only about six blood-stage malaria proteins have been well studied out of a potential 100 proteins," she said. "There is an urgent need for malaria researchers to better coordinate their research efforts on these proteins. This will take us one step closer to developing an effective vaccine."

The research was funded by the National Health and Medical Research Council of Australia and a Victorian Government Operational Infrastructure Support grant.

Penny Fannin | EurekAlert!
Further information:
http://www.wehi.edu.au

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>