Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promiscuous queen bees maintain genetic diversity

17.04.2012
By mating with nearly 100 males, queen bees on isolated islands avoid inbreeding and keep colonies healthy.
The results, published in the current issue of PLoS ONE, focused on giant honey bee colonies on Hainan Island, off the coast of China. Since these bees have long been separated from their continental cousins, it was thought that the island bees would be prime candidates for inbreeding as well as having very different genes, said Zachary Huang, Michigan State University entomologist.

“We believed that the island bees would show evidence of the founder effect, or random genetic changes in an isolated population, on a unique sex determination gene from the mainland bees,” he said. “At first we were surprised when we couldn’t document this effect. Looking at it further, I asked myself, ‘Why didn’t I think of this before?’”

When compared to bees, humans have a rather simplistic sex-determination process. In females, the two sex-determination chromosomes are the same, and in males the two chromosomes are different. With bees, however, the combinations of complementary sex determination genes, or CSDs, determine the sex and the societal role of the bees.

One particular gene can have alleles – the “flavor” of genes. In humans, they dictate hair and eye color. In bees, though, they are responsible for creating females (worker bees), fertile males (that mate with the queen) or infertile males (diploid males which serve no purpose).

The voila moment came once Huang estimated the bees’ mating habits and the potential of CSD allele combinations. That’s when he understood why he couldn’t confirm the founder effect. Keeping the CSD mix diverse is one of the keys to maintaining a healthy hive, he said.

The island queens carry around 40 CSD alleles. Since they mate with nearly 100 males – each also harboring around 40 alleles – the high number of healthy genetic combinations keeps the gene pool diverse. By using natural selection to create healthy offspring, the bees perpetuate a healthy colony.

In comparison, if the island bees adopted the breeding habits of fire ants, with queens mating with a single male, inbreeding could wreck the off-shore claves or distinct populations of bees. The devastating change would reduce the fitness of the hive, decreasing the female workforce, as well as lowering the number of mating males.

What would be left would be an unhealthy hive with higher numbers of diploid or infertile males, with the same alleles, Huang said.

By extending his research beyond Hainan Island, Huang found evidence that showed that the island wasn’t an isolated case.

“We failed to find any clustering of the bees’ CSD alleles according to their geographical origin; the Hainan and mainland bees did not form separate clades,” said Huang, whose research is supported by MSU AgBioResearch. “Previously published CSD sequences also failed to show any unique clade-forming in the Philippines and Malaysia.”

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world’s most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>