Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prolactin blocks oncogene associated with poor prognosis in breast cancer

04.02.2010
Researchers from the Kimmel Cancer Center at Jefferson have found a mechanism by which a hormone responsible for milk production blocks an oncogene that makes breast cancer more aggressive.

Publishing in the journal Cancer Research, the researchers discovered that prolactin, a pituitary hormone that normally stimulates breast development and milk production, in fact reduces levels of an oncogene called BCL6. The BCL6 protein has previously been shown to play a role in poorly differentiated breast cancer, which carries a poorer prognosis.

According to Hallgeir Rui, M.D., Ph.D., a professor of Cancer Biology and Medical Oncology at Jefferson Medical College of Thomas Jefferson University, prolactin's role in breast cancer is, to a large extent, carried out by a protein pathway called Stat5. In breast cancer, the inactivation of Stat5 is related to poorly differentiated breast cancer, and thus poorer prognosis.

"We found that prolactin will block expression of the BCL6 protein, and showed that Stat5a, but not the very similar Stat5b variant, is involved in this process as a mediator of prolactin," said Dr. Rui. "We think that prolactin plays an important role in preventing aggressive breast cancers, and that there is a connection between the loss of Stat5 and the increase of BCL6 in making breast cancer more aggressive."

Dr Rui and his laboratory investigated the phenomenon in several different breast cancer cell lines grown in the laboratory, and also in mice and in human breast cancer samples. The relationship held up across all three.

Receptors for prolactin are present on a majority of breast cancers. Prolactin levels in blood are relatively unaffected by menopause, and breast cancer patients across all age groups are exposed to the hormone. The new findings may lead to better diagnostic tests for breast cancer, and also the development of new treatments.

Emily Shafer | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: Bcl6 Medical Wellness Stat5 breast cancer diagnostic test prolactin

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>