Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prolactin blocks oncogene associated with poor prognosis in breast cancer

04.02.2010
Researchers from the Kimmel Cancer Center at Jefferson have found a mechanism by which a hormone responsible for milk production blocks an oncogene that makes breast cancer more aggressive.

Publishing in the journal Cancer Research, the researchers discovered that prolactin, a pituitary hormone that normally stimulates breast development and milk production, in fact reduces levels of an oncogene called BCL6. The BCL6 protein has previously been shown to play a role in poorly differentiated breast cancer, which carries a poorer prognosis.

According to Hallgeir Rui, M.D., Ph.D., a professor of Cancer Biology and Medical Oncology at Jefferson Medical College of Thomas Jefferson University, prolactin's role in breast cancer is, to a large extent, carried out by a protein pathway called Stat5. In breast cancer, the inactivation of Stat5 is related to poorly differentiated breast cancer, and thus poorer prognosis.

"We found that prolactin will block expression of the BCL6 protein, and showed that Stat5a, but not the very similar Stat5b variant, is involved in this process as a mediator of prolactin," said Dr. Rui. "We think that prolactin plays an important role in preventing aggressive breast cancers, and that there is a connection between the loss of Stat5 and the increase of BCL6 in making breast cancer more aggressive."

Dr Rui and his laboratory investigated the phenomenon in several different breast cancer cell lines grown in the laboratory, and also in mice and in human breast cancer samples. The relationship held up across all three.

Receptors for prolactin are present on a majority of breast cancers. Prolactin levels in blood are relatively unaffected by menopause, and breast cancer patients across all age groups are exposed to the hormone. The new findings may lead to better diagnostic tests for breast cancer, and also the development of new treatments.

Emily Shafer | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: Bcl6 Medical Wellness Stat5 breast cancer diagnostic test prolactin

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>