Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress in Stem Cell Research based on SLOT

07.10.2013
The Laser Zentrum Hannover (LZH e.V.) is currently active in a project dealing with the tomographic monitoring of 3-D cell cultures consisting of pluripotent stem cells (hPSC).

The goal of the collaborative research project is, for the first time, to use Scanning Laser Optical Tomography (SLOT) for non-invasive, direct, quantitative compilation of the absolute number of cells in cultured, endogenous cell groups.


Image of an uncolored aggregate / spheroids from hiPS cells using intrinsic contrast mechanisms with SLOT: Raw data for scattered light (top left) and extinction (middle left) and superposition of both channels (lower left), reconstructed data after filtering the rear projection equivalent to the raw data, rendered image of the superposition of both channels, volume image (top right), in silico cross-section of a 50 µm cut (middle right), and a 15 µm cut (lower right), (the scale bars depict 100 µm).

The results of the project TOMOSphere should bring a better understanding of the physiology of hPSC and other stem cells, as well as a continuous control of their characteristics, making decisive progress in therapeutic concepts possible.

For the investigations, SLOT-technology, which was developed and patented at the LZH, was used for the first time for the temporally and spatially resolved observation of native or fixed cells in three-dimensional aggregate structures. Knowledge gained from using this process can be used to classify and later to sort the aggregates, for example concerning heterogeneity of the cell structure, possible cyst formation, or the deposition of extracellular matrixes.

Furthermore, conclusions concerning important process parameters for the cultivation of aggregates in stirred suspension cultures can be made, such as inoculation densities, the influence of the culture medium, or the maximum or optimal cell and aggregate density per ml of culture medium.

In order to gather this information, the collaborative project is developing an incubation system based on SLOT for tomographic long-term investigations of tissue samples, combined with a wide spectrum of contrast methods. On the one hand, this process should enable marker-free identification of intrinsic cell and tissue specific characteristics, and on the other hand, provide a secondary contrast method using low molecular substances.

For example, with this method, the fluctuation of NAD/NADH, cAMP, Ca2+ ions and their enrichments can be observed, or various states of cell cycles up to a programmed cell death can be verified. Further, it can be used to observe and analyze differential intra- or extracellular agglomerations, or to image different micro- and nanoparticles in cell aggregates.

By using SLOT based, marker-free verification methods for stem cell pluripotency, a higher sensitivity can be reached, especially in comparison to conventional methods. From a technical point of view, a cuvette with cell aggregates is scanned using a needle beam, and a projection image for each scanning position is made from the scattered light, the transmitted light and the fluorescent light. While turning the sample, projections are recorded, and then based on a back projection algorithm, a 3-D data set is generated.

In silico slices can be generated this way, which enable a view deep into the sample material in absence of performing classical histology. Basically, this method can be used to image any isolated and sufficiently transparent sample.

In order to carry out process research and development and controlling on a larger scale, an industrially relevant bioreactor platform with integrated SLOT technology for the mass production of human pluripotent stem cells, and based on this differentiation of cell types, should appear on the market.

Cells resulting from this setup can be used in regenerative medicine, for in vitro modeling of human diseases and illnesses, and for new methods for therapeutic approaches, or for the development of pharmacologically active substances.

The project with a total funding volume of 4.134 Mio. € is part of the “Ultrasensitive Verification and Manipulation of Cells and/or Tissue and their molecular Substances” call for proposals of the German Ministry of Education and Research (BMBF). Apart from the LZH, there are five other partners in the collaborative project (LaVision BioTec/Bielefeld, LEBAO/Hannover, Scivis/Göttingen, Sill Optics/Wendelstein and Miltenyi BioTec/Bergisch Gladbach).

The project started on July 1st, 2013, and the consortium will be funded in the next three years by the BMBF with a total of 2.621 Mio. €.

Contact:
Laser Zentrum Hannover e.V. (LZH)
Lena Bennefeld
Hollerithallee 8
D-30419 Hannover
Tel.: +49 511 2788-238
Fax: +49 511 2788-100
E-Mail: l.bennefeld@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>