Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress in Stem Cell Research based on SLOT

07.10.2013
The Laser Zentrum Hannover (LZH e.V.) is currently active in a project dealing with the tomographic monitoring of 3-D cell cultures consisting of pluripotent stem cells (hPSC).

The goal of the collaborative research project is, for the first time, to use Scanning Laser Optical Tomography (SLOT) for non-invasive, direct, quantitative compilation of the absolute number of cells in cultured, endogenous cell groups.


Image of an uncolored aggregate / spheroids from hiPS cells using intrinsic contrast mechanisms with SLOT: Raw data for scattered light (top left) and extinction (middle left) and superposition of both channels (lower left), reconstructed data after filtering the rear projection equivalent to the raw data, rendered image of the superposition of both channels, volume image (top right), in silico cross-section of a 50 µm cut (middle right), and a 15 µm cut (lower right), (the scale bars depict 100 µm).

The results of the project TOMOSphere should bring a better understanding of the physiology of hPSC and other stem cells, as well as a continuous control of their characteristics, making decisive progress in therapeutic concepts possible.

For the investigations, SLOT-technology, which was developed and patented at the LZH, was used for the first time for the temporally and spatially resolved observation of native or fixed cells in three-dimensional aggregate structures. Knowledge gained from using this process can be used to classify and later to sort the aggregates, for example concerning heterogeneity of the cell structure, possible cyst formation, or the deposition of extracellular matrixes.

Furthermore, conclusions concerning important process parameters for the cultivation of aggregates in stirred suspension cultures can be made, such as inoculation densities, the influence of the culture medium, or the maximum or optimal cell and aggregate density per ml of culture medium.

In order to gather this information, the collaborative project is developing an incubation system based on SLOT for tomographic long-term investigations of tissue samples, combined with a wide spectrum of contrast methods. On the one hand, this process should enable marker-free identification of intrinsic cell and tissue specific characteristics, and on the other hand, provide a secondary contrast method using low molecular substances.

For example, with this method, the fluctuation of NAD/NADH, cAMP, Ca2+ ions and their enrichments can be observed, or various states of cell cycles up to a programmed cell death can be verified. Further, it can be used to observe and analyze differential intra- or extracellular agglomerations, or to image different micro- and nanoparticles in cell aggregates.

By using SLOT based, marker-free verification methods for stem cell pluripotency, a higher sensitivity can be reached, especially in comparison to conventional methods. From a technical point of view, a cuvette with cell aggregates is scanned using a needle beam, and a projection image for each scanning position is made from the scattered light, the transmitted light and the fluorescent light. While turning the sample, projections are recorded, and then based on a back projection algorithm, a 3-D data set is generated.

In silico slices can be generated this way, which enable a view deep into the sample material in absence of performing classical histology. Basically, this method can be used to image any isolated and sufficiently transparent sample.

In order to carry out process research and development and controlling on a larger scale, an industrially relevant bioreactor platform with integrated SLOT technology for the mass production of human pluripotent stem cells, and based on this differentiation of cell types, should appear on the market.

Cells resulting from this setup can be used in regenerative medicine, for in vitro modeling of human diseases and illnesses, and for new methods for therapeutic approaches, or for the development of pharmacologically active substances.

The project with a total funding volume of 4.134 Mio. € is part of the “Ultrasensitive Verification and Manipulation of Cells and/or Tissue and their molecular Substances” call for proposals of the German Ministry of Education and Research (BMBF). Apart from the LZH, there are five other partners in the collaborative project (LaVision BioTec/Bielefeld, LEBAO/Hannover, Scivis/Göttingen, Sill Optics/Wendelstein and Miltenyi BioTec/Bergisch Gladbach).

The project started on July 1st, 2013, and the consortium will be funded in the next three years by the BMBF with a total of 2.621 Mio. €.

Contact:
Laser Zentrum Hannover e.V. (LZH)
Lena Bennefeld
Hollerithallee 8
D-30419 Hannover
Tel.: +49 511 2788-238
Fax: +49 511 2788-100
E-Mail: l.bennefeld@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>