Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress Toward Artificial Cells

11.08.2009
Synthesis of uniform, unilamellar vesicles by means of microfluidics

In cosmetics, lipid vesicles, also known as liposomes, effectively transport ingredients through the skin. However, they are also used to encapsulate pharmaceuticals and release them at the intended point of treatment. They are used as tiny biochemical reactors, and in research they serve as models for biomembranes and cells.

A team led by Shoji Takeuchi at the University of Tokyo (Japan) has now developed a simple, highly efficient method for the production of vesicles. As reported in the journal Angewandte Chemie, it is based on microfluidic T junctions.

The applications described above all require unilamellar vesicles, which means that the vesicle membrane must consist of a single lipid double-layer. In addition, the vesicles need to be of uniform size – about the same size as a natural cell. Also, the desired contents must be effectively encapsulated. In order for the vesicles to carry a sufficient load, the substances must be used in highly concentrated solution. Previous production methods could not achieve all of these goals or were too complex.

The Japanese team has now developed a new method that is simple but still meets all of these needs. The secret of their success is a microfluidic technique in which tiny volumes of liquid flow through tiny channels. This elicits effects that do not occur in systems of “normal size”. The scientists’ microfluidic system consists of a main channel with many delicate side channels that branch off (T junctions). These broaden into little chambers. First water is introduced, then a solution of lipids in oil, then water again. When the water rinses the oil (or the oil rinses the water) out of the main channel, a small amount remains behind in the chambers. This results in a fine film of oil whose two boundary layers facing the water contain lipid molecules arranged in a monolayer. The lipids do this because they consist of a water-friendly section and a fat-friendly portion. A gentle flow through the side channels and a simultaneous flow through the main channel push the oil film out of the chamber and press it together so that the two lipid monolayers join to form a double layer. This lipid film then bulges out into the main channel and follows the direction of flow. Obstacles designed into the system ensure that the bulge closes itself off into a spherical vesicle. This produces vesicles of uniform size. The tiny volumes used minimize the consumption of agents and reagents while achieving high throughput.

The researchers were also able to incorporate proteins into their lipid membranes to form pores and encapsulate a complete gene expression system. These are the first steps toward the development of artificial cells.

Author: Shoji Takeuchi, University of Tokyo (Japan), http://www.hybrid.iis.u-tokyo.ac.jp/html/contact.php

Title: Microfluidic Formation of Monodisperse, Cell-Sized, and Unilamellar Vesicles

Angewandte Chemie International Edition, doi: 10.1002/anie.200902182

Shoji Takeuchi | wiley-vch.de
Further information:
http://pressroom.angewandte.org
http://www.hybrid.iis.u-tokyo.ac.jp/html/contact.php

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>