Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress Toward Artificial Cells

11.08.2009
Synthesis of uniform, unilamellar vesicles by means of microfluidics

In cosmetics, lipid vesicles, also known as liposomes, effectively transport ingredients through the skin. However, they are also used to encapsulate pharmaceuticals and release them at the intended point of treatment. They are used as tiny biochemical reactors, and in research they serve as models for biomembranes and cells.

A team led by Shoji Takeuchi at the University of Tokyo (Japan) has now developed a simple, highly efficient method for the production of vesicles. As reported in the journal Angewandte Chemie, it is based on microfluidic T junctions.

The applications described above all require unilamellar vesicles, which means that the vesicle membrane must consist of a single lipid double-layer. In addition, the vesicles need to be of uniform size – about the same size as a natural cell. Also, the desired contents must be effectively encapsulated. In order for the vesicles to carry a sufficient load, the substances must be used in highly concentrated solution. Previous production methods could not achieve all of these goals or were too complex.

The Japanese team has now developed a new method that is simple but still meets all of these needs. The secret of their success is a microfluidic technique in which tiny volumes of liquid flow through tiny channels. This elicits effects that do not occur in systems of “normal size”. The scientists’ microfluidic system consists of a main channel with many delicate side channels that branch off (T junctions). These broaden into little chambers. First water is introduced, then a solution of lipids in oil, then water again. When the water rinses the oil (or the oil rinses the water) out of the main channel, a small amount remains behind in the chambers. This results in a fine film of oil whose two boundary layers facing the water contain lipid molecules arranged in a monolayer. The lipids do this because they consist of a water-friendly section and a fat-friendly portion. A gentle flow through the side channels and a simultaneous flow through the main channel push the oil film out of the chamber and press it together so that the two lipid monolayers join to form a double layer. This lipid film then bulges out into the main channel and follows the direction of flow. Obstacles designed into the system ensure that the bulge closes itself off into a spherical vesicle. This produces vesicles of uniform size. The tiny volumes used minimize the consumption of agents and reagents while achieving high throughput.

The researchers were also able to incorporate proteins into their lipid membranes to form pores and encapsulate a complete gene expression system. These are the first steps toward the development of artificial cells.

Author: Shoji Takeuchi, University of Tokyo (Japan), http://www.hybrid.iis.u-tokyo.ac.jp/html/contact.php

Title: Microfluidic Formation of Monodisperse, Cell-Sized, and Unilamellar Vesicles

Angewandte Chemie International Edition, doi: 10.1002/anie.200902182

Shoji Takeuchi | wiley-vch.de
Further information:
http://pressroom.angewandte.org
http://www.hybrid.iis.u-tokyo.ac.jp/html/contact.php

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>