Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress toward an Alzheimer's drug that saves brain cells

23.03.2009
VIB scientists connected to the K.U.Leuven have identified a molecule that can form the basis for a new therapy for Alzheimer's disease.

This is the first step toward a medicine that could actually stop the progress of Alzheimer's. Existing medicines can at best limit the loss of memory during the first phases of the disease.

The authoritative journal Science is publishing the results of this research. A first step, however, is still a long way from an approved drug − even if everything goes well, it will be another 15 years before the medicine becomes available.

Alzheimer's disease

Alzheimer's disease is the most prevalent form of dementia in the Western world. The disease's harmful effects on memory and mental functioning make it one of the most terrifying syndromes. It is estimated that, by 2010, our country will have more than 150,000 Alzheimer's patients. At present, this disease is still incurable. Today's medicines for Alzheimer's patients sustain the memory functions for a short time, but they do not stop the brain's cells from dying off.

Plaques and the γ-secretase complex

A typical characteristic of the brains of Alzheimer's patients is the presence of amyloid plaques, which are abnormal accumulations of the β-amyloid protein between the neurons. The sticky β-amyloid arises when the amyloid precursor protein is cut into pieces incorrectly.

The γ-secretase complex − which cuts proteins at a specific place − plays a major role in the creation of these plaques. However, this complex (group of proteins that work together) is also involved in the regulation of a series of other essential proteins such as Notch, which plays a crucial role in the development of an embryo. This is why many of the medicines in development that act on the whole γ-secretase complex run up against toxic side effects.

Aph1B

Under the direction of Bart De Strooper, and in collaboration with researchers in other countries, Lutgarde Serneels, Jérôme Van Biervliet and their colleagues have been studying the γ-secretase complex in a variety of tissues. They have now been able to demonstrate that the complex assumes a different shape and function according to the tissue in which the secretase is active. For their research on Alzheimer's disease, the researchers have used mouse models. They have found that deactivating the variant, Aph1B γ-secretase, in Alzheimer mice leads to reduced formation of the plaques, without any harmful side effects.

Importance of the research

With this discovery, the researchers are once again opening a way toward the development of medicines that deactivate γ-secretase. By concentrating on a variant of the complex that cuts proteins specifically in the brain − the Aph1B γ-secretase complex − the formation of the plaques can be prevented, while the other functions of γ-secretase are not affected. This raises hopes for a drug that, for the first time, will succeed in stopping Alzheimer's disease. Furthermore, because the toxic side effects have been cut away, it could also be administered preventively to persons with a risk of Alzheimer's. However, such a medicine will still require at least a good 15 years of further research and development.

Given the fact that γ-secretase is also involved in the onset of certain cancers, research on the various variants of γ-secretase can lead to new insights into these diseases as well.

Evy Vierstraete | EurekAlert!
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>