Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Programming Cells to Home to Specific Tissues may Enable More Effective Cell-based Therapies

28.10.2011
Stem cell therapies hold enormous potential to address some of the most tragic illnesses, diseases, and tissue defects world-wide.

However, the inability to target cells to tissues of interest poses a significant barrier to effective cell therapy. To address this hurdle, researchers at Brigham and Women’s Hospital (BWH) have developed a platform approach to chemically incorporate homing receptors onto the surface of cells.

This simple approach has the potential to improve the efficacy of many types of cell therapies by increasing the concentrations of cells at target locations in the body. These findings are published online in the journal Blood on October 27, 2011.

For this new platform, researchers engineered the surface of cells to include receptors that act as a homing device. “The central hypothesis of our work is that the ability of cells to home to specific tissues can be enhanced, without otherwise altering cell function,” said corresponding author Jeffrey M. Karp, PhD, co-director of the Regenerative Therapeutics Center at BWH and a principal faculty member of the Harvard Stem Cell Institute. “By knowing the ‘zip code’ of the blood vessels in specific tissues, we can program the ‘address’ onto the surface of the cells to potentially target them with high efficiencies.”

While conventional cell therapies that include local administration of cells can be useful, they are typically more invasive with limited potential for multiple doses. “You can imagine, that when the targeted tissue is cardiac muscle, for example to treat heart attacks or heart failure, injecting the cells directly into the heart can be an invasive procedure and typically this approach can only be performed once,” said Dr. Karp, also an assistant professor at Harvard Medical School and affiliate faculty Harvard-MIT Division of Health Sciences and Technology.

Using the platform the researchers created, the cells are prepared to travel directly to the area of interest after being injected through a common and much less invasive intravenous infusion method. “These engineered cells may also be more effective because multiple doses can be administered” stated Debanjan Sarkar, PhD, previously a postdoctoral fellow in Dr. Karp’s lab and now an Assistant Professor of Biomedical Engineering at the State University of New York, University at Buffalo.

“The necessity for a more effective delivery approach stems from the potential diseases cell therapy may address,” said Dr. Karp, noting that the approach can be used to systemically target bone producing cells to the bone marrow to treat osteoporosis, cardiomyocytes to the heart to treat ischemic tissue, neural stem cells to the brain to treat parkinson’s disease, or endothelial progenitor cells to sites of peripheral vascular disease to promote formation of new blood vessels.

The researchers concluded that, as the understanding of the mechanisms of cell trafficking grows, the ability to improve homing to specific tissues through engineered approaches should significantly enhance cell therapy by reducing the invasiveness of local administration, permitting repeat dosing, and potentially reducing the number of cells required to achieve a therapeutic effect, ultimately providing better outcomes for patients.

Study authors also include: Sebastian Schafer, Weian Zhao, Dawn P. Spelke, Joseph A. Philips, Praveen Kumar Vemula, and Rukmani Sridharan, each of Brigham and Women's Hospital, Harvard Medical School, the Harvard Stem Cell Institute, and the Harvard-MIT Division of Health Science and Technology; Joel A. Spencer, of Massachusetts General Hospital, Harvard Medical School, and Tufts University; Rohit Karnik, of the Massachusetts Institute of Technology; and Charles P.Lin, of Massachusetts General Hospital and Harvard Medical School.

Holly Brown-Ayers | EurekAlert!
Further information:
http://www.brighamandwomens.org/
http://www.brighamandwomens.org/about_bwh/publicaffairs/news/pressreleases/PressRelease.aspx?sub=0&PageID=987

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Could a particle accelerator using laser-driven implosion become a reality?

24.05.2018 | Physics and Astronomy

Hot cars can hit deadly temperatures in as little as one hour

24.05.2018 | Health and Medicine

Complementing conventional antibiotics

24.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>