Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Programming Cells to Home to Specific Tissues may Enable More Effective Cell-based Therapies

28.10.2011
Stem cell therapies hold enormous potential to address some of the most tragic illnesses, diseases, and tissue defects world-wide.

However, the inability to target cells to tissues of interest poses a significant barrier to effective cell therapy. To address this hurdle, researchers at Brigham and Women’s Hospital (BWH) have developed a platform approach to chemically incorporate homing receptors onto the surface of cells.

This simple approach has the potential to improve the efficacy of many types of cell therapies by increasing the concentrations of cells at target locations in the body. These findings are published online in the journal Blood on October 27, 2011.

For this new platform, researchers engineered the surface of cells to include receptors that act as a homing device. “The central hypothesis of our work is that the ability of cells to home to specific tissues can be enhanced, without otherwise altering cell function,” said corresponding author Jeffrey M. Karp, PhD, co-director of the Regenerative Therapeutics Center at BWH and a principal faculty member of the Harvard Stem Cell Institute. “By knowing the ‘zip code’ of the blood vessels in specific tissues, we can program the ‘address’ onto the surface of the cells to potentially target them with high efficiencies.”

While conventional cell therapies that include local administration of cells can be useful, they are typically more invasive with limited potential for multiple doses. “You can imagine, that when the targeted tissue is cardiac muscle, for example to treat heart attacks or heart failure, injecting the cells directly into the heart can be an invasive procedure and typically this approach can only be performed once,” said Dr. Karp, also an assistant professor at Harvard Medical School and affiliate faculty Harvard-MIT Division of Health Sciences and Technology.

Using the platform the researchers created, the cells are prepared to travel directly to the area of interest after being injected through a common and much less invasive intravenous infusion method. “These engineered cells may also be more effective because multiple doses can be administered” stated Debanjan Sarkar, PhD, previously a postdoctoral fellow in Dr. Karp’s lab and now an Assistant Professor of Biomedical Engineering at the State University of New York, University at Buffalo.

“The necessity for a more effective delivery approach stems from the potential diseases cell therapy may address,” said Dr. Karp, noting that the approach can be used to systemically target bone producing cells to the bone marrow to treat osteoporosis, cardiomyocytes to the heart to treat ischemic tissue, neural stem cells to the brain to treat parkinson’s disease, or endothelial progenitor cells to sites of peripheral vascular disease to promote formation of new blood vessels.

The researchers concluded that, as the understanding of the mechanisms of cell trafficking grows, the ability to improve homing to specific tissues through engineered approaches should significantly enhance cell therapy by reducing the invasiveness of local administration, permitting repeat dosing, and potentially reducing the number of cells required to achieve a therapeutic effect, ultimately providing better outcomes for patients.

Study authors also include: Sebastian Schafer, Weian Zhao, Dawn P. Spelke, Joseph A. Philips, Praveen Kumar Vemula, and Rukmani Sridharan, each of Brigham and Women's Hospital, Harvard Medical School, the Harvard Stem Cell Institute, and the Harvard-MIT Division of Health Science and Technology; Joel A. Spencer, of Massachusetts General Hospital, Harvard Medical School, and Tufts University; Rohit Karnik, of the Massachusetts Institute of Technology; and Charles P.Lin, of Massachusetts General Hospital and Harvard Medical School.

Holly Brown-Ayers | EurekAlert!
Further information:
http://www.brighamandwomens.org/
http://www.brighamandwomens.org/about_bwh/publicaffairs/news/pressreleases/PressRelease.aspx?sub=0&PageID=987

More articles from Life Sciences:

nachricht First-of-its-kind chemical oscillator offers new level of molecular control
15.12.2017 | University of Texas at Austin

nachricht New technique could make captured carbon more valuable
15.12.2017 | DOE/Idaho National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>