Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progeria: Promising results from new gene therapy on animals

28.10.2011
Researchers are continuing their efforts in an attempt to counter the consequences of the genetic defect that causes Progeria.

Until now, no model had been able to accurately imitate the effects of the disease in humans. For several years, research has been conducted in close collaboration from teams led by Nicolas Lévy and Annachiara De Sandre-Giovannoli at Inserm/Université de la Méditerranée and from a team led by Carlos López-Otín (University of Oviedo) and has succeeded in making such a model possible. The lifespan of mice treated through gene therapy is significantly extended and several other parameters related to them are improved.

The research, published on 26 October 2011 in Science Translational Medicine, received backing from the AFM thanks to donations from a Telethon.

Progeria is a rare genetic disease. Children suffering from it seem to experience accelerated aging (chronic hair loss, joint pains, thin and hairless skin, cardiovascular problems). In 2003, Nicolas Lévy and his team identified the cause of the disease when they discovered the involvement of the LMNA (nuclear protein-coding) gene, lamin A/C. The mutation causes the production of a truncated protein, progerin, which accumulates in the nuclei of cells and its toxic effects cause their deformation and various other malfunctions. It has since been proven that progerin progressively accumulates in normal cells, thus establishing a link between the disease and physiological aging.

In 2008, European clinical trials began on twelve children suffering from Progeria. The treatment is based on a combination of two existing molecules: statins (prescribed in the treatment and prevention of atherosclerosis and cardiovascular risks) and aminobisphosphonates (prescribed in to treat osteoporosis and to prevent complications in some forms of cancer). The use of both these molecules aims to chemically alter progerin to reduce its toxicity. However, although this treatment aimed to slow down the development of the disease, it did not reduce the quantities of progerin. To study this aspect, researchers needed to obtain a relevant animal model.

An "authentic" Progeria model…

To generate a model of this kind, Spanish and French researchers decided to introduce a gene mutation (G609G), equivalent to that identified in humans (G608G), in mice to reproduce the exact pathological mechanism found in the children, with a view to then blocking it. The mice models were created under the supervision of Bernard Malissen using the IBISA platform located at the Marseille-Luminy Centre of Immunology . This approach made it possible to obtain young mice that produced progerin, characteristic of the disease in humans. After three weeks alive, the mutated mice displayed growth defects, weight loss caused by bone deformation and cardiovascular and metabolic anomalies mirroring the human phenotype and considerably reducing their lifespan (an average of 103 days compared with two years for wild mice). The progerin thus produced accumulates in mouse cells via genetic mechanisms (abnormal splicing) identical to those observed in humans, i.e. the source of anomalies characteristic of the disease.

… for a targeted gene therapy

Using this unique Progeria animal model, the researchers focussed their efforts on implementing a mutation-targeted treatment, with a view to reducing, and, if possible, preventing the production of progerin. To this end, they used "vivo-morpholino" antisense oligonucleotide technology. "This technology, explains Nicolas Lévy, is based on introducing a synthetic antisense aglionecleotide into mice. As is the case with progeria, this sequence is applied to block (or facilitate) the production of a functional protein using a gene. In this case, the production of progerin, as well as lamin A from the gene, were reduced."

There was a highly significant increase in life expectancy of mice treated using this new technology, from an average of 155 days to a maximum of 190 days.

Nicolas Levy's team, with continued collaboration with Carlos López-Otín, now intend to translate this preclinical research into a new therapeutic trial for children, possibly combined with other pharmacological molecules. Other research is being conducted in parallel to find alternative administration channels for antisense oligonucleotides.

For more details:

Splicing-Directed Therapy in a New Mouse Model of Human Accelerated Aging
Fernando G. Osorio,1 Claire L. Navarro,2 Juan Cadiñanos,1 Isabel C. López-Mejía,3 Pedro M. Quirós,1 Catherine Bartoli,2 José Rivera,4 Jamal Tazi,3 Gabriela Guzmán,5 Ignacio Varela,1 Danielle Depetris,2 Félix de Carlos,6 Juan Cobo,6 Vicente Andrés,4 Annachiara De Sandre-Giovannoli,2,7 José M. P. Freije,1 Nicolas Lévy,2,7 Carlos López-Otín1†

1Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain. 2Université de la Méditerranée, Inserm UMR_S 910, Faculté de Médecine de Marseille, 13385 Marseille cedex 05, France. 3Institut de Génétique Moléculaire, UMR 5535 CNRS, 34293 Montpellier cedex 5, France. 4Departamento de Epidemiología, Aterotrombosis e Imagen, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain. 5Servicio de Cardiología, Hospital Universitario La Paz, 28046 Madrid, Spain. 6Departamento de Cirugía y Especialidades Médico-Quirúrgicas and Instituto Asturiano de Odontología, Universidad de Oviedo, 33006 Oviedo, Spain.7AP-HM, Département de Génétique Médicale, Hôpital d'Enfants de la Timone, 13385 Marseille cedex 05, France.

Science Translational Medicine, October 2011

Research contacts:
Nicolas Levy or Annachiara De Sandre-Giovannoli
annachiara.desandre-giovannoli@univmed.fr

Priscille Rivière | EurekAlert!
Further information:
http://www.inserm.fr

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>