Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progeria: Promising results from new gene therapy on animals

28.10.2011
Researchers are continuing their efforts in an attempt to counter the consequences of the genetic defect that causes Progeria.

Until now, no model had been able to accurately imitate the effects of the disease in humans. For several years, research has been conducted in close collaboration from teams led by Nicolas Lévy and Annachiara De Sandre-Giovannoli at Inserm/Université de la Méditerranée and from a team led by Carlos López-Otín (University of Oviedo) and has succeeded in making such a model possible. The lifespan of mice treated through gene therapy is significantly extended and several other parameters related to them are improved.

The research, published on 26 October 2011 in Science Translational Medicine, received backing from the AFM thanks to donations from a Telethon.

Progeria is a rare genetic disease. Children suffering from it seem to experience accelerated aging (chronic hair loss, joint pains, thin and hairless skin, cardiovascular problems). In 2003, Nicolas Lévy and his team identified the cause of the disease when they discovered the involvement of the LMNA (nuclear protein-coding) gene, lamin A/C. The mutation causes the production of a truncated protein, progerin, which accumulates in the nuclei of cells and its toxic effects cause their deformation and various other malfunctions. It has since been proven that progerin progressively accumulates in normal cells, thus establishing a link between the disease and physiological aging.

In 2008, European clinical trials began on twelve children suffering from Progeria. The treatment is based on a combination of two existing molecules: statins (prescribed in the treatment and prevention of atherosclerosis and cardiovascular risks) and aminobisphosphonates (prescribed in to treat osteoporosis and to prevent complications in some forms of cancer). The use of both these molecules aims to chemically alter progerin to reduce its toxicity. However, although this treatment aimed to slow down the development of the disease, it did not reduce the quantities of progerin. To study this aspect, researchers needed to obtain a relevant animal model.

An "authentic" Progeria model…

To generate a model of this kind, Spanish and French researchers decided to introduce a gene mutation (G609G), equivalent to that identified in humans (G608G), in mice to reproduce the exact pathological mechanism found in the children, with a view to then blocking it. The mice models were created under the supervision of Bernard Malissen using the IBISA platform located at the Marseille-Luminy Centre of Immunology . This approach made it possible to obtain young mice that produced progerin, characteristic of the disease in humans. After three weeks alive, the mutated mice displayed growth defects, weight loss caused by bone deformation and cardiovascular and metabolic anomalies mirroring the human phenotype and considerably reducing their lifespan (an average of 103 days compared with two years for wild mice). The progerin thus produced accumulates in mouse cells via genetic mechanisms (abnormal splicing) identical to those observed in humans, i.e. the source of anomalies characteristic of the disease.

… for a targeted gene therapy

Using this unique Progeria animal model, the researchers focussed their efforts on implementing a mutation-targeted treatment, with a view to reducing, and, if possible, preventing the production of progerin. To this end, they used "vivo-morpholino" antisense oligonucleotide technology. "This technology, explains Nicolas Lévy, is based on introducing a synthetic antisense aglionecleotide into mice. As is the case with progeria, this sequence is applied to block (or facilitate) the production of a functional protein using a gene. In this case, the production of progerin, as well as lamin A from the gene, were reduced."

There was a highly significant increase in life expectancy of mice treated using this new technology, from an average of 155 days to a maximum of 190 days.

Nicolas Levy's team, with continued collaboration with Carlos López-Otín, now intend to translate this preclinical research into a new therapeutic trial for children, possibly combined with other pharmacological molecules. Other research is being conducted in parallel to find alternative administration channels for antisense oligonucleotides.

For more details:

Splicing-Directed Therapy in a New Mouse Model of Human Accelerated Aging
Fernando G. Osorio,1 Claire L. Navarro,2 Juan Cadiñanos,1 Isabel C. López-Mejía,3 Pedro M. Quirós,1 Catherine Bartoli,2 José Rivera,4 Jamal Tazi,3 Gabriela Guzmán,5 Ignacio Varela,1 Danielle Depetris,2 Félix de Carlos,6 Juan Cobo,6 Vicente Andrés,4 Annachiara De Sandre-Giovannoli,2,7 José M. P. Freije,1 Nicolas Lévy,2,7 Carlos López-Otín1†

1Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain. 2Université de la Méditerranée, Inserm UMR_S 910, Faculté de Médecine de Marseille, 13385 Marseille cedex 05, France. 3Institut de Génétique Moléculaire, UMR 5535 CNRS, 34293 Montpellier cedex 5, France. 4Departamento de Epidemiología, Aterotrombosis e Imagen, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain. 5Servicio de Cardiología, Hospital Universitario La Paz, 28046 Madrid, Spain. 6Departamento de Cirugía y Especialidades Médico-Quirúrgicas and Instituto Asturiano de Odontología, Universidad de Oviedo, 33006 Oviedo, Spain.7AP-HM, Département de Génétique Médicale, Hôpital d'Enfants de la Timone, 13385 Marseille cedex 05, France.

Science Translational Medicine, October 2011

Research contacts:
Nicolas Levy or Annachiara De Sandre-Giovannoli
annachiara.desandre-giovannoli@univmed.fr

Priscille Rivière | EurekAlert!
Further information:
http://www.inserm.fr

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>